
import sys, atexit , msvcrt

from time import sleep

sys.path.append(“../lib/”)

from moway_lib import *

if __name__ == ‘__main__’:

 atexit.register(exit_mow)

	

channel = 7

moway.usbinit_moway()

ret = moway.init_moway(channel)

if ret == 0:

 	 print ‘Moway RFUSB Connected’

else:	

	 print ‘Moway RFUSB not connected. Exit’

	 exit(-1)

while True:

	 if msvcrt.kbhit():

		 ch = msvcrt.getch()

		 if ch==’w’:

			 moway.command_moway(CMD_GO_SIMPLE,0)

			 moway.command_moway(CMD_LEDSOFF,0)

			 moway.command_moway(CMD_FRONTLEDON,0)

		 if ch==’z’:

			 moway.command_moway(CMD_BACK_SIMPLE,0)

			 moway.command_moway(CMD_LEDSOFF,0)

			 moway.command_moway(CMD_BRAKELEDON,0)

		 if ch==’a’:

			 moway.command_moway(CMD_LEFT_SIMPLE,0)

			 moway.command_moway(CMD_LEDSOFF,0)

			 moway.command_moway(CMD_GREENLEDON,0)

		 if ch==’d’:

			 moway.command_moway(CMD_RIGHT_SIMPLE,0)

			 moway.command_moway(CMD_LEDSOFF,0)

			 moway.command_moway(CMD_REDLEDON,0)

		 if ch==’s’:

			 moway.command_moway(CMD_STOP,0)

			 moway.command_moway(CMD_LEDSOFF,0)

			 moway.command_moway(CMD_BRAKELEDON,0)

education

Guide for the teacher

2

INDEX
1. INTRODUCTION...3

2. MOWAY AND PYTHON COMMUNICATION..3
Introduction.. 3
Radiofrequency... 4
Commands... 4
Sensors.. 5

3. EXERCISE: MOVEMENT...5
Introduction.. 5
mOway wheels.. 5
Exercise 3.1. Square Simple.. 6
Exercise 3.2. Square.. 8
Exercise 3.3. Regular Polygons... 9
Exercise 3.4. RC CAR... 10

4. EXERCISE: LEDS AND LOUDSPEAKER..12
Introduction.. 12
LED lights.. 12
Exercise 4.1. RC Car with leds... 14
Exercise 4.2. RC Car with LEDs and sound.. 16

5. EXERCISE: SENSORS - SOUND...19

Exercise 5.1. Clap and Move.. 19

6. EXERCISE: SENSORS. LINE AND OBSTACLES..21
Line sensors... 22
Obstacle sensors... 23
Exercise 6.1. Enclosed... 23
Exercise 6.2 Line Follow.. 25
Exercise 6.3. Obstacle detection... 26
Exercise 6.4. Obstacle detection... 26

7. EXERCISE: LIGHT SENSOR...30
Exercise 7.1. Car Lights... 30

8. EXERCISE: ACCELEROMETER...32
Exercise 8.1. Plot accelerometer... 35
Exercise 8.2. Pong game... 35

9. ANNEX I: Libmoway functions...36

10. ANNEX II: Libmoway commands...38
Simple movement Commands... 38
Action Commands.. 38
Full movement commands.. 39

11. ANNEX III: Install Moway python Libraries in Windows systems...........................40

12. ANNEX IV: Install Moway python Libraries in Linux..40

3

1. INTRODUCTION
mOway is a small, programmable autonomous robot designed mainly for practical

applications of mobile robotics. It is a perfect educational tool for those who wish to take
their first steps in the world of robotics and for those who have worked with robots and
wish to develop more complex applications.

The mOway robot is fitted with a number of sensors that help us to move around a
real environment. It is also equipped with a motor that enables it to travel on the floor.
All these peripheral devices are connected to a microcontroller, which is responsible for
controlling the robot.

mOway develops personal skills such as creativity, a desire to continue learning and
team work. Its great advantage is its rapid learning curve: students get results right from
the very first class and this generates a great deal of motivation.

2. MOWAY AND PYTHON COMMUNICATION
Introduction

The mOway robot is controlled from Python environment using a number of different
commands. A command is an order coded and sent to the robot. When the robot receives
this order, it performs the action it has been ordered to carry out. For example, if we want
the robot to advance, we must send the “CMD_GO” command in python. When we execute
this command, the robot will receive this order and its wheels will activate.

On the other hand, the mOway robot is equipped with a number of different sensors. A
sensor is an electronic device used to measure the surrounding conditions. For example,
mOway is fitted with obstacle sensors to detect objects in front of the robot, a light sensor
to detect whether it is daytime or night time and a temperature sensor, etc. The robot
sends the values detected by its sensors to the PC environment on a continuous basis.

Both the commands and the values detected by the sensors are sent by radiofrequency
(RF). The mOway robot and the Python environment exchange messages wirelessly. These
messages are managed through the “libmoway” library, which provides users
asimple way to control mOway robot using Python.

4

Radiofrequency

To enable wireless communications between the Python environment and the mOway
robot, the following items are required:

Commands

In the Python environment, commands are sent with the:

moway. command_moway(COMMAND_TO_SEND,TIMEOUT)

function. This block sends the command in brackets to the mOway Robot. The second
parameter of the function called TIMEOUT is the amount of time the system waits for
mOway to receive the command. As the communication between Python and mOway is
based on RF it is possible that commands cannot get to its destination correctly. This
function also has a return value. The value returned is “0” if the command is received
by mOway correctly. It is “1” if the command sent is the same as the last command sent
to the mOway and the value is “2” if the timeout counter ends and the command is not
received by mOway. The TIMEOUT parameter is expressed in ms.

RFUSB

- This is connected to the computer.

- It is used to send commands from
Python and to receive the values detected
in the robot sensors.

RF Module

- This is connected to the mOway robot.

- It is used to receive commands from
Phtyon and to send values detected by the
sensors.

Commands

Sensors

5

Sensors

The robot sends the value detected in its sensors via radiofrequency on a continuous
basis. These values are received by libmoway and can be read in Python using moway.
get__XXXXX() command. We have different coding for each sensor.

 For example moway.get_obs_center_left(), gets the value of center-left obstacle
sensor. In ANNEX I you can learn all about the different sensors and how to read their
values.

3. EXERCISE: MOVEMENT
Introduction

In this exercise, we will learn how to control the movements of the robot using Python.
In addition, we will see how we can make a RC car using mOway.

mOway wheels

The robot can move as it is equipped with two wheels
which allow it to move forwards, backwards and turn. In
this way we can make mOway move in any direction to
explore different areas with its sensors, for example.

The two robot wheels are independent of each other,
which means that each of these can turn at a different speed and in a different direction.
This provides a number of different opportunities:

• If the wheels turn forwards at the same speed, the robot moves forward.

• If the wheels turn backwards at the same speed, the robot moves backwards.

• If the wheels turn at different speeds, the robot moves in a curve.

• If the wheels turn in different directions, the robot turns on its axis.

• If one wheel turns and the other doesn’t, the robot turns on the wheel that is not
turning.

6

The movements of the mOway robot robot can be controlled according to the following
parameters:

• Speed: The speed of the wheels is higher or lower.

• Time: We can chose the time during which the robot is to move.

• Distance: We can choose the distance to be travelled by the robot.

In order to determine the distance travelled by the robot, the
wheels are fitted with an “encoder”. An “encoder” is similar to
a bicycle odometer: this counts the number of times a wheel
turns and, knowing the diameter of the wheel, it is possible to
calculate the distance it has travelled.

In order to introduce mOway movement we start using the simple movement commands:

Exercise 3.1. Square Simple
Before starting check that you have correctly install the software for your operating

system. You can read Annex III or IV (Windows or Linux) before programming mOway.

In this exercise we are going to make the mOway robot draw a square on the ground.
Starting for a basic implementation of a square we will end creating a regular polygon
drawing using more complex functions.

Command Description

CMD_GO_SIMPLE mOway goes forward indefinitely

CMD_BACK_SIMPLE mOway goes backwards indefinitely

CMD_STOP mOway stops

CMD_LEFT_SIMPLE mOway turns 90 degree left

CMD_RIGHT_SIMPLE mOway turns 90 degree right

7

The first part of mOway and python programs should be always the same. We import
moway_lib.py file with is small python library in charge of loading mOway functions
depending on the OS and it also contains the constants declarations. You can review the
source code of moway_lib.py in the lib folder of the mOway_python_pack.

import sys, atexit

from time import sleep

sys.path.append(“../lib/”)

from moway_lib import *

This part of the code closes the RF connection once the program is exited.

if __name__ == ‘__main__’:

 atexit.register(exit_mow)

If you wish to use several robots in different computers, it is necessary to assign a different
channel to each robot to avoid any interferences between them. in this example we have
programmed mOway for working in channel 7. If the connection cannot be established
with mowayRFUSB the “init_moway” function will return a value different from “0”.

channel = 7

moway.usbinit_moway()

ret = moway.init_moway(channel)

if ret == 0:

 print ‘Moway RFUSB Connected’

else:

 print ‘Moway RFUSB not connected. Exit’

 exit(-1)

Once the libraries are loaded and the connection is established it is time to program
mOway. We will repeat the sequence 4 times to draw a rectangle: go forward for two
seconds, turn right and wait one second.

for i in range(4):

 moway.command_moway(CMD_GO_SIMPLE,0)

 sleep(2)

 moway.command_moway(CMD_RIGHT_SIMPLE,0)

 sleep(1)

8

Exercise 3.2. Square
In this square exercise we introduce a new command for controlling mOway movements.

This command is wait_mot_end(TIMEOUT). This command is used when we send
a movement command to mOway with a limited time, distance or angle. In the first
example we used the python “sleep” function to move mOway robot for two seconds.
But in this new example we will draw a 20 cm side square using set_distance() and
wait_mot end(). Instead of using CMD_RIGHT_SIMPLE, we use the command CMD_
ROTATERIGHT which requires variable settings before calling the function.

import sys, atexit

from time import sleep

sys.path.append(“../lib/”)

from moway_lib import *

if __name__ == ‘__main__’:

 atexit.register(exit_mow)

	

channel = 7

moway.usbinit_moway()

ret = moway.init_moway(channel)

if ret == 0:

 	 print ‘Moway RFUSB Connected’

else:	

	 print ‘Moway RFUSB not connected. Exit’

	 exit(-1)

for i in range(4):

	 #Set variables for go command

	 moway.set_distance(200)

	 moway.set_speed(100)

	 moway.command_moway(CMD_GO,0)

	 #wait for movement end

	 moway.wait_mot_end(0)

	 #Set variables for rotate command

	 moway.set_rotation(90)

	 moway.set_rotation_axis(CENTER)

	 moway.command_moway(CMD_ROTATERIGHT,0)

	 #wait for movement end

	 moway.wait_mot_end(0)

9

Exercise 3.3. Regular Polygons
In the next exercise we draw regular polygons using moway. Number and length of sides

is entered by user and mOway then calculates the movements needed.

import sys, atexit

from time import sleep

sys.path.append(“../lib/”)

from moway_lib import *

if __name__ == ‘__main__’:

 atexit.register(exit_mow)

	

channel = 7

moway.usbinit_moway()

ret = moway.init_moway(channel)

if ret == 0:

 	 print ‘Moway RFUSB Connected’

else:	

	 print ‘Moway RFUSB not connected. Exit’

	 exit(-1)

Sides and length is entered by user with raw_input()function. This function works
in python 2.7. If you are using python 3.x you must modify this part of the code:

sides = int(raw_input(“Enter sides of the regular polygon (3
-10): “));

length = int(raw_input(“Enter length of the side (100 - 255 mm):
“));

if sides < 3 and sides > 10:

 print “Sides number not correct. Exit”

 exit(-1)

if length < 100 and length > 255:

 print “Sides number not correct. Exit”

 exit(-1)

Angle is calculated using the formula:

interior angle = (n-2) × 180° / n

10

As mOway is drawing the external angle:

angle = 180 - interior angle

angle = 180 * (1 - float(sides-2)/float(sides))

print angle

for i in range(sides):

	 #Set variables for go command

	 moway.set_distance(length)

	 moway.set_speed(100)

	 moway.command_moway(CMD_GO,0)

	 #wait for movement end

	 moway.wait_mot_end(0)

	 #Set variables for rotate command

	 moway.set_rotation(int(angle))

	 moway.set_rotation_axis(CENTER)

	 moway.command_moway(CMD_ROTATERIGHT,0)

	 #wait for movement end

	 moway.wait_mot_end(0)

Exercise 3.4. RC CAR
In this exercise we use mOway as an RC car controlled by the keyboard of the PC. We

have two different versions of the program depending on the OS you are using. Here
we will explain the Windows version. Note that this example must run in a terminal and
not in IDLE shell to work as msvcrt functions used to detect the keys pressed work in a
terminal. You can double click the python script to run it on Windows or write $python
3_4_mowayRC_linux.py in a terminal in Linux.

import sys, atexit , msvcrt

from time import sleep

sys.path.append(“../lib/”)

from moway_lib import *

if __name__ == ‘__main__’:

 atexit.register(exit_mow)

	

channel = 7

11

moway.usbinit_moway()

ret = moway.init_moway(channel)

if ret == 0:

 	 print ‘Moway RFUSB Connected’

else:	

	 print ‘Moway RFUSB not connected. Exit’

	 exit(-1)

If a key is pressed (kbhit), we get the key (getch) and depending on its value we
send different commands to mOway.

while True:

	 if msvcrt.kbhit():

		 ch = msvcrt.getch()

		 if ch==’w’:

			 moway.command_moway(CMD_GO_SIMPLE,0)

		 if ch==’z’:

			 moway.command_moway(CMD_BACK_SIMPLE,0)

		 if ch==’a’:

			 moway.command_moway(CMD_LEFT_SIMPLE,0)

		 if ch==’d’:

			 moway.command_moway(CMD_RIGHT_SIMPLE,0)

		 if ch==’s’:

			 moway.command_moway(CMD_STOP,0)

12

4. EXERCISE: LEDS AND LOUDSPEAKER
Introduction

In this exercise we are going to explain what an LED is and how we can activate the
LEDs of the mOway robot. We will also learn how to emit sounds with the robot using its
internal loudspeaker.

LED lights

An LED is an electronic device similar
to a light bulb: when an electric current
is passed through an LED, it lights up.
The great difference between an LED
and a normal light bulb is that LEDs
consume much less energy. Moreover,
LEDs last longer and withstand
vibrations better.

There are LEDs of different colours:
white, blue, red, green, etc.

Nowadays, we can see them everywhere: light bulbs, lamps, torches, TVs, car headlights, etc.

13

A normal light bulb is a little different due to the fact that most of the electrical
energy used to supply it (90%) is transformed into heat. Only 10% of the energy
is transformed into light.

In contrast, a LED does not heat up, taking greater advantage of the energy
used to supply it, transforming this into light.

14

The mOway robot can control 4 LEDs independently. Their locations are indicated in the
figure:

Exercise 4.1. RC Car with leds
The program consists of activating the LEDs every time the corresponding key is pressed.

The “up” and “down” arrows control the front and brake LEDs. The “left” and “right” arrows
control the green and red LEDs. The new commands we are going to use are as follows:

red LED

brake LEDs
front LED

Command Description

CMD_FRONTLEDON Turns ON the front LED

CMD_FRONTLEDOFF Turns OFF the front LED

CMD_GREENLEDON Turns ON the top green LED

CMD_GREENLEDOFF Turns OFF the top green LED

CMD_BRAKELEDON Turns ON the brake LED

CMD_BRAKELEDOFF Turns OFF the brake LED

CMD_REDLEDON Turns ON the top red LED

CMD_REDLEDOFF Turns OFF the top red LED

CMD_LEDSON Turns ON all LEDs

CMD_LEDSOFF Turns OFF all LEDs

15

import sys, atexit , msvcrt

from time import sleep

sys.path.append(“../lib/”)

from moway_lib import *

if __name__ == ‘__main__’:

 atexit.register(exit_mow)

	

channel = 7

moway.usbinit_moway()

ret = moway.init_moway(channel)

if ret == 0:

 	 print ‘Moway RFUSB Connected’

else:	

	 print ‘Moway RFUSB not connected. Exit’

	 exit(-1)

Each time a key is pressed LEDs turn off and then the proper LED is turned on: front for
going forward, brake for stop and red and green for right and left.

while True:

	 if msvcrt.kbhit():

		 ch = msvcrt.getch()

		 if ch==’w’:

			 moway.command_moway(CMD_GO_SIMPLE,0)

			 moway.command_moway(CMD_LEDSOFF,0)

			 moway.command_moway(CMD_FRONTLEDON,0)

		 if ch==’z’:

			 moway.command_moway(CMD_BACK_SIMPLE,0)

			 moway.command_moway(CMD_LEDSOFF,0)

			 moway.command_moway(CMD_BRAKELEDON,0)

		 if ch==’a’:

			 moway.command_moway(CMD_LEFT_SIMPLE,0)

			 moway.command_moway(CMD_LEDSOFF,0)

			 moway.command_moway(CMD_GREENLEDON,0)

		 if ch==’d’:

			 moway.command_moway(CMD_RIGHT_SIMPLE,0)

			 moway.command_moway(CMD_LEDSOFF,0)

			 moway.command_moway(CMD_REDLEDON,0)

16

		 if ch==’s’:

			 moway.command_moway(CMD_STOP,0)

			 moway.command_moway(CMD_LEDSOFF,0)

			 moway.command_moway(CMD_BRAKELEDON,0)

Exercise 4.2. RC Car with LEDs and sound
In the last exercise of this section we are going to make the mOway robot emit a sound

when it reverses.

The mOway robot is equipped with a “loudspeaker” or “buzzer”. A buzzer is a device
that emits a sound when it is connected to a variable voltage signal.

The sound is produced when an object vibrates. These vibrations are
transmitted through the air and reach our ear, where the eardrum is located.
On reaching the eardrum, the vibrations make this move, and in this way we
can detect the sounds.

For this reason, when a
variable voltage signal is
connected to the mOway
loudspeaker, the loudspeaker
vibrates and transmits this
vibration to the air.

These are the commands and variables used for controlling the loudspeaker:

Command Description Description

CMD_BUZZERON Turn ON the buzzer Frequency

CMD_BUZZEROFF Turn OFF the buzzer -

17

import sys, atexit , msvcrt

from time import sleep

sys.path.append(“../lib/”)

from moway_lib import *

if __name__ == ‘__main__’:

 atexit.register(exit_mow)

	

channel = 7

moway.usbinit_moway()

ret = moway.init_moway(channel)

if ret == 0:

 	 print ‘Moway RFUSB Connected’

else:	

	 print ‘Moway RFUSB not connected. Exit’

	 exit(-1)

Set the frequency to 440 Hz.	

moway.set_frequency (440)

while True:

	 if msvcrt.kbhit():

		 ch = msvcrt.getch()

		 if ch==’w’:

			 moway.command_moway(CMD_GO_SIMPLE,0)

			 moway.command_moway(CMD_LEDSOFF,0)

			 moway.command_moway(CMD_FRONTLEDON,0)

Before going backwards the buzzer turns on and off as some trucks or industrial
machines do.

		 if ch==’z’:

 moway.command_moway(CMD_STOP,0)

			 moway.command_moway(CMD_LEDSOFF,0)

			 moway.command_moway(CMD_BUZZERON,0)

			 sleep(0.5)

			 moway.command_moway(CMD_BUZZEROFF,0)

			 sleep(0.5)

			 moway.command_moway(CMD_BUZZERON,0)

18

			 sleep(0.5)

			 moway.command_moway(CMD_BUZZEROFF,0)

			 sleep(0.5)

			 moway.command_moway(CMD_BACK_SIMPLE,0)

		 if ch==’a’:

			 moway.command_moway(CMD_LEFT_SIMPLE,0)

			 moway.command_moway(CMD_LEDSOFF,0)

			 moway.command_moway(CMD_GREENLEDON,0)

		 if ch==’d’:

			 moway.command_moway(CMD_RIGHT_SIMPLE,0)

			 moway.command_moway(CMD_LEDSOFF,0)

			 moway.command_moway(CMD_REDLEDON,0)

		 if ch==’s’:

			 moway.command_moway(CMD_STOP,0)

			 moway.command_moway(CMD_LEDSOFF,0)

			 moway.command_moway(CMD_BRAKELEDON,0)

19

5.	 EXERCISE: SENSORS - SOUND
Now we are going to introduce the “sensor” concept and concentrate on the application

and use of one of these: the microphone.

A sensor is an item that allows a robot to discover the world around it. It is somewhat
similar to our senses. Thanks to the sensors, the mOway robot can “see”, “hear” and
“feel”. This allows it to stop when it nears an object, move forwards when it detects a
sound, turn on a light when going through a tunnel, etc.

A sensor is a device capable of detecting physical or chemical magnitudes
and transforming these into electrical signals. These electrical signals are
read by the mOway microprocessor and are transformed and sent to Scratch
in the form of numerical magnitudes for use in our programmes.

In order to measure the amount of sound received,
mOway uses an electret type microphone like the
one in the picture. This microphone uses a plastic
electrode which, when polarised, provokes electrical
variations when the sound comes into contact with
the microphone.

Electret microphones are used in multiple applications:

• Clip-on microphones (like the ones used on TV)

• Microphone in portable recorders

• Mobile phones

This is the function used to read the value of the microphone:

Exercise 5.1. Clap and Move
When we generate a first loud sound (it may be a shout or clap) mOway will move

forward for two seconds using time variable and wait for a new sound. With the second
sound, mOway will return to the starting position.

Function Returns Parameters Description

int get_mic() 0 -100 % - Returns the value of the microphone

20

import sys, atexit

from time import sleep

sys.path.append(“../lib/”)

from moway_lib import *

if __name__ == ‘__main__’:

 atexit.register(exit_mow)

	

channel = 7

moway.usbinit_moway()

ret = moway.init_moway(channel)

if ret == 0:

 	 print ‘Moway RFUSB Connected’

else:	

	 print ‘Moway RFUSB not connected. Exit’

	 exit(-1)

#set time varibale to 2 secs

moway.set_time(20)

moway.command_moway(CMD_GREENLEDON,0)

while True:

While the value readed is less than 40% mOway will remain in its place. If a sound is
detected by mOway, it will move forward for two seconds and turn around waiting for
another sound to return to its initial position.

	 while moway.get_mic() < 40 :

		 print moway.get_mic()

		 sleep(0.1)

	 print moway.get_mic()

	 moway.command_moway(CMD_GREENLEDOFF,0)

	 moway.command_moway(CMD_GO)

	 moway.wait_mot_end(0)

	 moway.command_moway(CMD_TURN_AROUND,0)

	 moway.wait_mot_end(0)

	 moway.command_moway(CMD_GREENLEDON,0)

	 sleep(0.5)

21

6. EXERCISE: SENSORS. LINE AND
OBSTACLES

In this new chapter we are going to concentrate on line and obstacle sensors. Both
sensors share this space because they are based on the same technology. They are
infrared sensors consisting of an LED emitter (such as the ones we saw earlier) and a
receiver. Unlike the previous ones, these LED emitters emit a non-visible light, infrared
light.

Infrared light emitters and receivers have multiple applications in the world we
live in. A very common use is in TV remote controls. They are also used for short
distance communications between computers and peripheral devices.

Infrared is also used in night vision equipment, surveillance video or, for
example, in rescue equipment when there is an absence of light.

Another of the common uses of these sensors is to detect obstacles. For
example, these sensors are used in the doors of garages and lifts to detect when
a person or car is passing through to prevent the doors from closing on them.

22

Line sensors

mOway’s two line sensors are made up of an infrared
LED transmitter and an infrared receiver. These use
reflected infrared light to detect the colour (on a
grey scale) of the floor where the robot is standing.

As we have stated before, sensors convert physical
magnitudes into electrical signals. In this case, the
amount of infrared light received, which depends on
the colour of the floor, is converted into an electrical
signal which is read by the mOway microprocessor and
sent to the PC.

In this case, mOway translates the amount of light received into numbers. When the
surface under mOway is white, a greater amount of light will be reflected than when the
surface is black. mOway interprets and translates those signals, indicating by a
value of 0 to 100 the amount of colour detected, 0 being white and 100 black.

These are the functions used for reading the line sensors:

In order to facilitate the development and use of the robot in python, mOway incorporates
a number of higher-level functions with respect to its line sensors. mOway has functions
in which the robot itself is responsible for its movements, using the line sensors to follow
a black line on a white background.

If we send mOway a command “CMD_LINE_FOLLOW_R”, mOway will automatically
begin to read its line sensors and adjust its movement to follow a black line on a white
background. The strategy mOway follows to develop this function is to “walk” along the
edge, keeping one of its line sensors on the white part and another on the black part. The
second part of the command (_R), indicates that mOway will follow the right-hand edge
of the black line. If we write “CMD_LINE_FOLLOW_L”, mOway will follow the left-hand

edge of the line. In the following exercises we will see how this command works.

Function Returns Parameters Description

int get_line_left() 0 -100 % - Returns value of the left line sensor

int get_line_right() 0 -100 % - Returns value of the right line sensor

Command Description Variables used

CMD_LINE_FOLLOW_L mOway follows the a black line in the left border Speed

CMD_LINE_FOLLOW_R mOway follows the a black line in the right border Speed

23

Obstacle sensors

mOway has four obstacle sensors made up of two infrared LED emitters and four
infrared receivers. It uses the reflection of infrared light to detect obstacles in its path.

The light emitted by the LEDs strikes against the objects in front of mOway and is
reflected towards the receivers. If the receivers detect infrared return beams, this will
mean that mOway has an obstacle in front of it. In this case, the infrared light received is
converted into an electrical signal which is read by the mOway microprocessor and sent to
Scratch in accordance with the nearness and size of the object, representing with a value
of 0 the absence of any obstacle and an increasing number of up to 100 in the presence
of obstacles.

These are the functions used for reading the line sensors:

Exercise 6.1. Enclosed
In this practice denominated “Enclosed”, mOway must remain within an enclosed area

outlined by black lines drawn on the ground. We will learn how to use line sensors,
required to detect the black line.

import sys, atexit

from time import sleep

sys.path.append(“../lib/”)

from moway_lib import *

Function Returns Parameters Description

int get_obs_side_left() 0 -100 % -
Returns value of the side left
obstacle sensor

int get_obs_center_left() 0 -100 % -
Returns value of the center left
obstacle sensor

int get_obs_side_right() 0 -100 % -
Returns value of the side right
obstacle sensor

int get_obs_center_right() 0 -100 % -
Returns value of the center right
obstacle sensor

24

if __name__ == ‘__main__’:

 atexit.register(exit_mow)

	

channel = 7

moway.usbinit_moway()

ret = moway.init_moway(channel)

if ret == 0:

 	 print ‘Moway RFUSB Connected’

else:	

	 print ‘Moway RFUSB not connected. Exit’

	 exit(-1)

The values of both line sensors are added and compared to 50 in order to detect a black
line (value near 100) in any sensor. Once the black line is detected mOway turns around.
once the turn is finished (wait_mot_end) mOway continue moving forward.

moway.command_moway(CMD_GO_SIMPLE,0)

while True:

	 line = moway.get_line_left() + moway.get_line_right()

	 if line > 50:

		 moway.command_moway(CMD_TURN_AROUND,0)

		 moway.wait_mot_end(0)

		 moway.command_moway(CMD_GO_SIMPLE,0)

You can add some commands to use the LEDs in this practice: front led while moving
forward and brake led while turning around.

moway.command_moway(CMD_GO_SIMPLE,0)

moway.command_moway(CMD_FRONTLEDON,0)

while True:

	 line = moway.get_line_left() + moway.get_line_right()

	 if line > 50:

		 moway.command_moway(CMD_LEDSOFF,0)

		 moway.command_moway(CMD_BRAKELEDON,0)

		 moway.command_moway(CMD_TURN_AROUND,0)

		 moway.wait_mot_end(2)

		 moway.command_moway(CMD_GO_SIMPLE,0)

		 moway.command_moway(CMD_LEDSOFF,0)

		 moway.command_moway(CMD_FRONTLEDON,0)

25

Exercise 6.2 Line Follow
In this practice mOway robot follows a

black line using only one line sensor. The
strategy will be to follow the left border
of the line. When the right sensor detects
black mOway turns right and when white
is detected mOway turns left. Notice that
in this case we set the rotation axis to
“WHEEL”. If the axis is set to “CENTER”
mOway will remain in its place rotating,
without going forward as in the center
rotation one motor goes forward and the
other one goes backward.

Note: As the control of mOway robot using python is not as fast as working with the
microcontroller itself the black line must be wide enough to give time to mOway to detect
its variation.

import sys, atexit

from time import sleep

sys.path.append(“../lib/”)

from moway_lib import *

if __name__ == ‘__main__’:

 atexit.register(exit_mow)

	

channel = 7

moway.usbinit_moway()

ret = moway.init_moway(channel)

if ret == 0:

 	 print ‘Moway RFUSB Connected’

else:	

	 print ‘Moway RFUSB not connected. Exit’

	 exit(-1)

moway.set_rotation_axis(WHEEL)

while True:

	 line_r = moway.get_line_right()

	 if line_r < 50:

		 moway.command_moway(CMD_ROTATERIGHT,0)

	 else:

		 moway.command_moway(CMD_ROTATELEFT,0)

26

Exercise 6.3. Obstacle detection
This exercise is very similar to the first one in this unit. We change the obstacle sensors

instead of line sensor. In this case mOway will turn around whenever it detects an obstacle.

import sys, atexit

from time import sleep

sys.path.append(“../lib/”)

from moway_lib import *

if __name__ == ‘__main__’:

 atexit.register(exit_mow)

	

channel = 7

moway.usbinit_moway()

ret = moway.init_moway(channel)

if ret == 0:

 	 print ‘Moway RFUSB Connected’

else:	

	 print ‘Moway RFUSB not connected. Exit’

	 exit(-1)

moway.command_moway(CMD_GO_SIMPLE,0)

while True:

	 obstacle = moway.get_obs_center_left() + moway.get_obs_center_
right()

	 if obstacle > 0:

		 moway.command_moway(CMD_TURN_AROUND,0)

		 moway.wait_mot_end(0)

		 moway.command_moway(CMD_GO_SIMPLE,0

Exercise 6.4. Obstacle detection
In the next exercise we are going to make use of both sensors: line and obstacles. On

the same track with a black line from the previous exercise, we will introduce a number of
obstacles as shown in the illustration. The aim of this exercise is for mOway to follow the
line and, when it finds an obstacle, to a turn around and continue following the line in the
opposite direction. If we execute this program in the environment shown in the picture
below, mOway will bounce, following the line between one obstacle to the other.

27

In this exercise we are going to need a turn of a little more than 180 degrees so that
when mOway sees an obstacle and has to turn, it can visualize the black line with its
sensors. The first time the program is attempted, the “turnaround” command can be used
to see how mOway sometimes does not find the line on its return.

import sys, atexit

from time import sleep

sys.path.append(“../lib/”)

from moway_lib import *

if __name__ == ‘__main__’:

 atexit.register(exit_mow)

	

channel = 7

moway.usbinit_moway()

ret = moway.init_moway(channel)

if ret == 0:

 	 print ‘Moway RFUSB Connected’

else:	

	 print ‘Moway RFUSB not connected. Exit’

	 exit(-1)

	

moway.set_rotation(210)

while True:

	 moway.command_moway(CMD_LINE_FOLLOW_L,0)

	 obstacle = moway.get_obs_center_left() + moway.get_obs_center_

28

right() + moway.get_obs_side_left() + moway.get_obs_side_right()

	 if obstacle > 0:

		 moway.command_moway(CMD_ROTATELEFT,0)

		 moway.command_moway(CMD_BRAKELEDON,0)

		 moway.wait_mot_end(0)

		 moway.command_moway(CMD_BRAKELEDOFF,0)

Exercise 6.5. Defender
The final exercise in this chapter is highly entertaining and interesting for students. In

this exercise we will also make use of the line and obstacle sensors, but for a different
purpose. For our physical scenario, we can use the track utilized in previous exercises as
long as this line is closed.

mOway will remain within its area (inside the black line) and will try to push any foreign
objects it finds in its area. In this exercise, we will introduce the use of a new command
“CMD_PUSH”. When mOway moves forward, looking for objects and the green LED on,
it will do this in a straight line until it reaches the end of its area or finds an object. If it
reaches the end of the line, it will move back a little in order not to go out of its area, turn
to the right and continue to move forward in search of new “invaders”. Once it finds an
object, it will push this until it reaches the end of its area and the object is left outside.

import sys, atexit

from time import sleep

sys.path.append(“../lib/”)

from moway_lib import *

if __name__ == ‘__main__’:

 atexit.register(exit_mow)

channel = 7

moway.usbinit_moway()

ret = moway.init_moway(channel)

if ret == 0:

 print ‘Moway RFUSB Connected’

else:

 print ‘Moway RFUSB not connected. Exit’

 exit(-1)

moway.command_moway(CMD_GO_SIMPLE,0)

moway.command_moway(CMD_GREENLEDON,0)

29

moway.set_rotation(144)

If mOway finds a black line will go back a bit and turn around.

while True:

 if moway.get_line_left() + moway.get_line_right() > 50:

 moway.set_time(3)

 moway.command_moway(CMD_BACK,0)

 moway.wait_mot_end(0)

 moway.set_time(0)

 moway.command_moway(CMD_ROTATERIGHT,0)

 moway.wait_mot_end(0)

 moway.command_moway(CMD_GO_SIMPLE,0)

If mOway detects and obstacle in any of the sensors, mOway turns on front and red
LEDs and pushes the “intruder” until the black line is detected.

 else:
 obstacle = moway.get_obs_center_left() + moway.

get_obs_center_right() + moway.get_obs_side_left() + moway.get_
obs_side_right()

 if obstacle > 0:

 moway.command_moway(CMD_PUSH,0)

 moway.command_moway(CMD_LEDSOFF,0)

 moway.command_moway(CMD_FRONTLEDON,0)

 moway.command_moway(CMD_REDLEDON,0)

 while moway.get_line_left() + moway.get_
line_right() < 50:

 print ‘Pushing’

 moway.command_moway(CMD_LEDSOFF,0)

 moway.command_moway(CMD_GREENLEDON,0)

30

7.	 EXERCISE: LIGHT SENSOR
A light sensor is a device that measures the amount of light in a location. For example,

in cars, it can be used to turn on the lights automatically in tunnels or at dusk.

Light sensors are generally based on an
element called a photodiode. This electronic
component allows more or less current
to pass through it in accordance with the
amount of light received.

Light sensors have many applications in
our environment. For example, have you
noticed that mobile phone screens dim when
we turn off the lights? In this way it saves
batteries thanks to the light sensor similar
to the one fitted in the mOway robot.

Exercise 7.1. Car Lights
In this exercise we will make mOway follow the black line while it reads the light sensor.

When it goes through a tunnel (low light condition), the front LED will turn on. We will
print light sensor value in the screen each second.

import sys, atexit

from time import sleep

sys.path.append(“../lib/”)

from moway_lib import *

if __name__ == ‘__main__’:

 atexit.register(exit_mow)

	

channel = 7

moway.usbinit_moway()

ret = moway.init_moway(channel)

if ret == 0:

 	 print ‘Moway RFUSB Connected’

else:	

31

	 print ‘Moway RFUSB not connected. Exit’

	 exit(-1)

while True:

	 moway.command_moway(CMD_LINE_FOLLOW_L,0)

	 light = moway.get_light()

	 print light

	 if light < 40:

		 moway.command_moway(CMD_FRONTLEDON,0)

	 else:

		 moway.command_moway(CMD_FRONTLEDOFF,0)

	 sleep(1)

32

8.	 EXERCISE: ACCELEROMETER
An accelerometer is a device that measures the inclination of an object. It can be found

in mobile phones, video console controls, and so on,…

When you turn a mobile phone, the image on the screen switches to the correct position.
In other words, a mobile phone “knows” that when it is turned it has to change the image
so that it can be read correctly. How does the mobile phone “know” what position it is in?
In other words, how can we measure the inclination have an object?

Imagine we have a board from which a pendulum is hung. Due to the force of gravity,
the pendulum is always going to be in a vertical position. What happens if we place the
board in different positions?

A number of different positions are shown below. The angle formed by the board and
the pendulum is shown in green.

If the board is in a horizontal position, the board and the pendulum form a right angle.
In the following drawing, this angle is indicated in green:

33

If the board is tilted towards the right, the angle is less than 90°. In the following
drawing, the angle is approximately 45°:

If the board is inclined towards the left, the angle formed is greater than 90°. In this
drawing, the angle is approximately 120°:

In reality, an accelerometer measures accelerations. Any force is an acceleration,
including the force of gravity. The accelerometer inside mOway is a kind of “pendulum”
which allows the robot to determine whether it is tilted and on what side it is tilted. This
“pendulum” is capable of detecting the inclination in 3 axes.

34

In other words, if we tilt the robot in the following ways:

In this exercise we are going to use the mOway robot as a videogames remote control.
By tilting the robot towards the left or the right, the figure in the video game will move in
that direction.

To do this, it is necessary to determine the accelerometer value. We are going to control
the figure by tilting the mOway robot towards the right and left.

The programmes in this exercise feature several figures or objects. Each of these figures
and objects have their own programme.

These are the functions for retrieving the accelometer data from mOway:

Inclination
Forwards and
backwards

Right to left Up and down

Axis Y axis X axis Z axis

Positions

Function Returns Parameters Description

float get_accel_X() +/- 2 g -
Returns the value of the accelerometer
X-axis

float get_accel_Y() +/- 2 g -
Returns the value of the accelerometer
Y-axis

float get_accel_Z() +/- 2 g -
Returns the value of the accelerometer
Z-axis

35

Exercise 8.1. Plot accelerometer
In this exercise we are going to use the mOway accelerometer like a remote sensor and

we will paint the magnitude of the acceloremeter data received in the screen.

This example is programmed in Linux using pygtk, matplotlib, and numpy libraries.

Exercise 8.2. Pong game
The next exercise is a recreation of the classic game “Pong”, with one player using

moway as a controller and the other one using the keyboard (up and down keys). The
game consists of a ball that bounces across the screen and players have to prevent the
ball from touching the wall behind it.

In the projects folder the complete source code of this exercise is available. The part of
code involving mOway controller is:

#Set bat 1 position using accelerometer

move_x = moway.get_accel_X()

print move_x

#speed of the bat is proportional to the inclination of x-axis

self.player1Bat.speed = abs(int(move_x*26))

#if mOway robot is nearly plain the bat does not move

if move_x > 0.1:

	 self.player1Bat.startMove(“up”)

elif move_x < -0.1:

	 self.player1Bat.startMove(“down”)

else:

	 self.player1Bat.stopMove()

36

9. ANNEX I: Libmoway functions

Function Returns Parameters Description

usbinit_moway() - -
Initialization of libmoway
communication library

exit_moway() - - Exit of libmoway library

int init_moway(uint8_t
channel)

0: OK

-1: error
1-100

RFUSB connection and channel
selection

void close_moway() - - Closes RFUSB connection

int command_
moway(uint8_t command,
int timeout);

0: Received

1: Repeated

2: Timeout

Command: See list of
commands

Timeout: in ms

Sends a command to mOway
Robot

void set_speed

(int speed)
- Speed: 0-100% Sets distance variable

void set_rotation

(int rotation)
- rotation: 0 -360 Sets rotation variable

void set_distance

(uint8_t distance)
- distance: 0 - 255 mm Sets distance variable

void set_radius

(uint8_t radius)
- radius: 0 -100 Sets radius variable

void set_rotation_axis

(uint8_t axis)
-

axis:

WHEEL - CENTER

Sets rotation axis to WHEEL or
CENTER

void set_time

(uint8_t time)
- time: 0 - 255 ms Sets time variable

void set_frequency

(int frequency)
- frequency: 0 -20.000 Hz Sets frequency of the buzzer

int wait_mot_end(int
timeout)

0: Finished

-1: Not started

-2: Timeout

timeout - secs
Waits for motor movement to
complete

int get_obs_side_left() 0 -100 % -
Returns value of the side left
obstacle sensor

37

Function Returns Parameters Description

int get_obs_center_left() 0 -100 % -
Returns value of the center left obstacle
sensor

int get_obs_side_right() 0 -100 % -
Returns value of the side right obstacle
sensor

int get_obs_center_right() 0 -100 % -
Returns value of the center right obstacle
sensor

int get_line_left() 0 -100 % - Returns value of the left line sensor

int get_line_right() 0 -100 % - Returns value of the right line sensor

int get_mic() 0 -100 % - Returns the value of the microphone

int get_light() 0 -100 % - Returns the value of the light sensor

int get_distance() 0 -65535 (mm) -
Returns the distance counter of the
motors

float get_accel_X() +/- 2 g -
Returns the value of the accelerometer
X-axis

float get_accel_Y() +/- 2 g -
Returns the value of the accelerometer
Y-axis

float get_accel_Z() +/- 2 g -
Returns the value of the accelerometer
Z-axis

int moway_active()
0: Inactive

> 0: Active
- Returns mOway state

int init_prog_moway()
0: OK

-1: Error
-

Initialization of libmoway programming
library

int program_moway

(char * file)

0: OK

-1: Error

-2: File not found

- Download an hex file into mOway robot

int program_moway_
channel

(char * file, int channel)

0: OK

-1: Error

-2: File not found

-
Download python programming hexfile
into mOway robot with channel selection

int read_moway_batt() 0-100% -
Returns mOway battery when mOway is
connected via USB

38

10. ANNEX II: Libmoway commands
Simple movement Commands

Action Commands

Command Description Variables used

CMD_GO_SIMPLE mOway goes forward indefinitely -

CMD_BACK_SIMPLE mOway goes backwards indefinitely -

CMD_STOP mOway stops -

CMD_LEFT_SIMPLE mOway turns 90 degree left axis

CMD_RIGHT_SIMPLE mOway turns 90 degree right axis

CMD_TURN_AROUND mOway turns around axis

Command Description Variables used

CMD_RESET_DIST Reset the distance counter of the motor -

CMD_FRONTLEDON Turns ON the front LED -

CMD_FRONTLEDOFF Turns OFF the front LED -

CMD_GREENLEDON Turns ON the top green LED -

CMD_GREENLEDOFF Turns OFF the top green LED -

CMD_BRAKELEDON Turns ON the brake LED -

CMD_BRAKELEDOFF Turns OFF the brake LED -

CMD_REDLEDON Turns ON the top red LED -

CMD_REDLEDOFF Turns OFF the top red LED -

CMD_FRONTBLINK Blinks front LED -

CMD_BRAKEBLINK Blinks brake LED -

CMD_GREENBLINK Blinks top green LED -

CMD_REDBLINK Blinks top red LED -

CMD_LEDSON Turns ON all LEDs -

39

Full movement commands

This movement commands can use a limited time or distance. If time and distance are
set to zero the movements continue indefinitely. In case both parameters are different
from zero the distance or angle parameter is predominant.

Command Description Variables used

CMD_LEDSOFF Turns OFF all LEDs -

CMD_LEDSBLINK Blinks all LEDs -

CMD_BUZZERON Turn ON the buzzer frequency

CMD_BUZZEROFF Turn OFF the buzzer -

CMD_MELODYCHARGE Plays "charge" music -

CMD_MELODYFAIL Plays "fail" music -

CMD_LINE_FOLLOW_L mOway follows the a black line in the left border speed

CMD_LINE_FOLLOW_R mOway follows the a black line in the right border speed

CMD_PUSH mOway pushes an obstacle in front -

Command Description Variables used

CMD_GO mOway goes forward for a set time or distance speed, time, distance,

CMD_BACK mOway goes backwards for a set time or distance speed, time, distance,

CMD_GOLEFT mOway goes forward and left for a set time or distance speed, time, distance, radius

CMD_GORIGHT mOway goes forward and right for a set time or distance speed, time, distance, radius

CMD_BACKLEFT mOway goes backwards and left for a set time or speed, time, distance, radius

CMD_BACKRIGHT mOway goes backwards and right for a set time or speed, time, distance, radius

CMD_ROTATELEFT mOway turns left for a set time or angle speed, time, rotation, axis

CMD_ROTATERIGHT mOway turns left for a set time or angle speed, time, rotation, axis

40

11. ANNEX III: Install Moway python
Libraries in Windows systems
1. Install python v2.7 for your operating system from http://www.python.org/download/.
NOTE: Python v3 could also be used but it will require little changes in the source files.

2. Download moway_python_pack.zip from www.moway-robot.com to your home folder
and extract it.

3. Install vcredist_x86 or vcredist_x64 (depending on you OS 32 or 64 bits) located in the
“install_windows” folder in moway_python_pack.

4. If it is your first mOway installation, you have to install the drivers of mOway RFUSB
located in “RFUsb Driver” once you plug the RFUSB.

5. If you create new files with python and mOway create them in the projects folder. If
you create them in another folder you may have to change moway_lib and the header of
the file with the locations of the libraries.

6. In order to start working with mOway robot and python, firmware must be downloaded
first into mOway. To download software you have to run “firm_download.py” program
located in projects folder. You can edit channel variable in this program. The channel
selected in the download is the channel that we will use in the future in our python
programs.

12. ANNEX IV: Install Moway python
Libraries in Linux
1. Download moway_python_pack.zip from www.moway-robot.com to your home folder
and extract it.

2. If you already have some mOway software working on your computer you can avoid
this step. if not you must copy the udev rules locates in install_linux/rules files to the /etc/
udev/rules.d/ folder. You must do this as root.

3. If you create new files with python and mOway create them in the projects folder. If
you create them in another folder you may have to change moway_lib and the header of
the file with the locations of the libraries.

4. In order to start working with mOway robot and python, firmware must be downloaded
first into mOway. To download software you have to run “firm_download.py” program
located in projects folder. You can edit channel variable in this program. The channel
selected in the download is the channel that we will use in the future in our python
programs.

http://www.python.org/download/
http://www.moway-robot.com
http://www.moway-robot.com

	1. INTRODUCTION
	2. MOWAY AND PYTHON COMMUNICATION
	Introduction
	Radiofrequency
	Commands
	Sensors

	3. EXERCISE: MOVEMENT
	Introduction
	mOway wheels
	Exercise 3.1. Square Simple
	Exercise 3.2. Square
	Exercise 3.3. Regular Polygons
	Exercise 3.4. RC CAR

	4. EXERCISE: LEDS AND LOUDSPEAKER
	Introduction
	LED lights
	Exercise 4.1. RC Car with leds
	Exercise 4.2. RC Car with LEDs and sound

	5.	EXERCISE: SENSORS - SOUND
	Exercise 5.1. Clap and Move

	6. EXERCISE: SENSORS. LINE AND OBSTACLES
	Line sensors
	Obstacle sensors
	Exercise 6.1. Enclosed
	Exercise 6.2 Line Follow
	Exercise 6.3. Obstacle detection
	Exercise 6.4. Obstacle detection

	7.	EXERCISE: LIGHT SENSOR
	Exercise 7.1. Car Lights

	8.	EXERCISE: ACCELEROMETER
	Exercise 8.1. Plot accelerometer
	Exercise 8.2. Pong game

	9. ANNEX I: Libmoway functions
	10. ANNEX II: Libmoway commands
	Simple movement Commands
	Action Commands
	Full movement commands

	11. ANNEX III: Install Moway python Libraries in Windows systems
	12. ANNEX IV: Install Moway python Libraries in Linux

