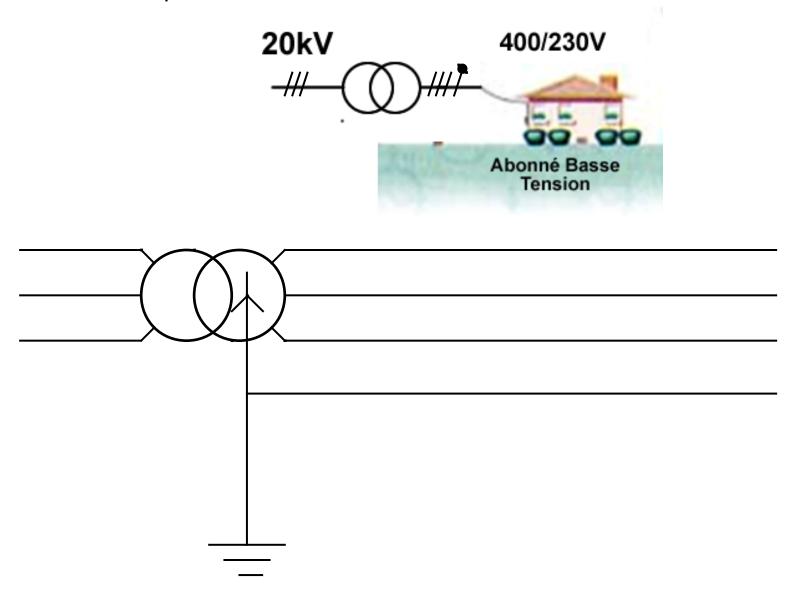

Cours d'Electrotechnique

- Notions Fondamentales & Architecture électrique
 - Protection des lignes

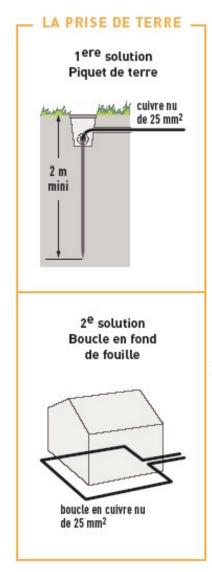
(Choix de section câbles et protections électriques)

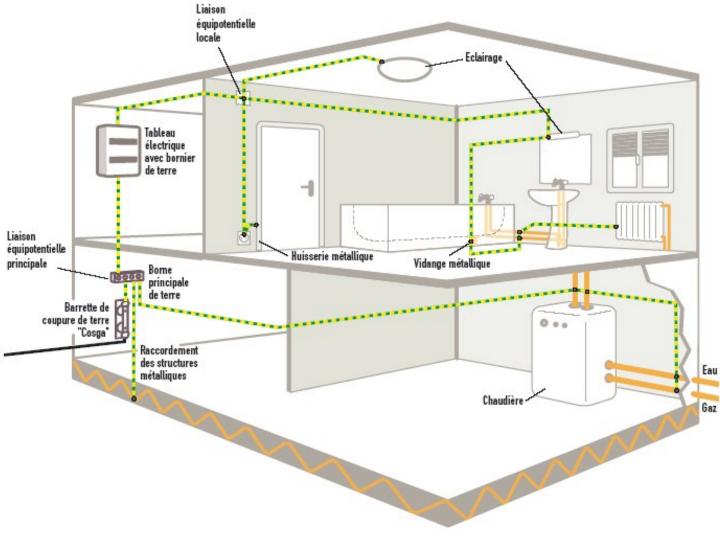
•Danger du courant – Protection des personnes – Schémas de liaison à la terre

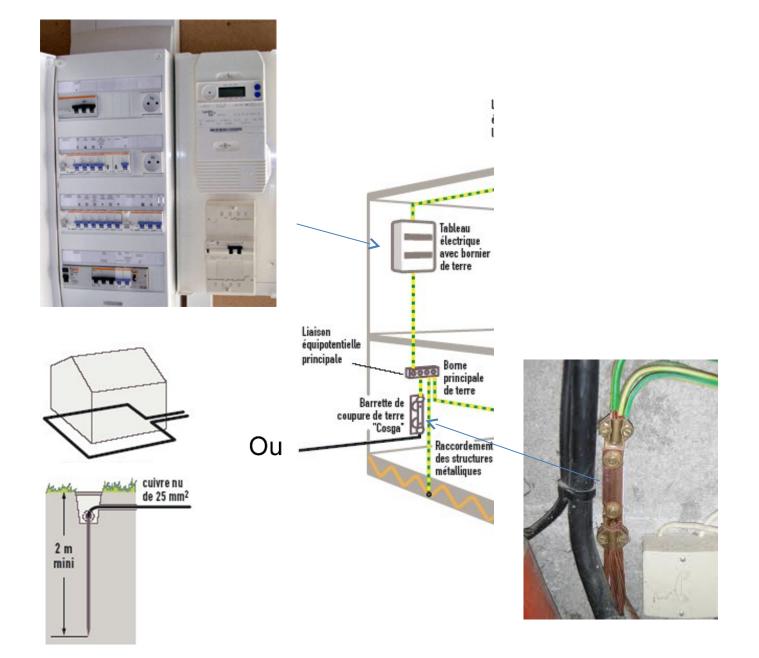
BTS MSEF



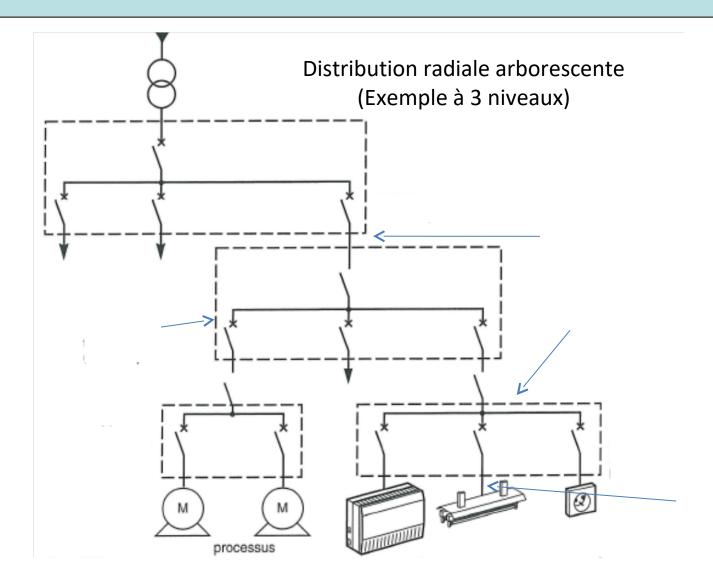
1 - Distribution de l'énergie électrique

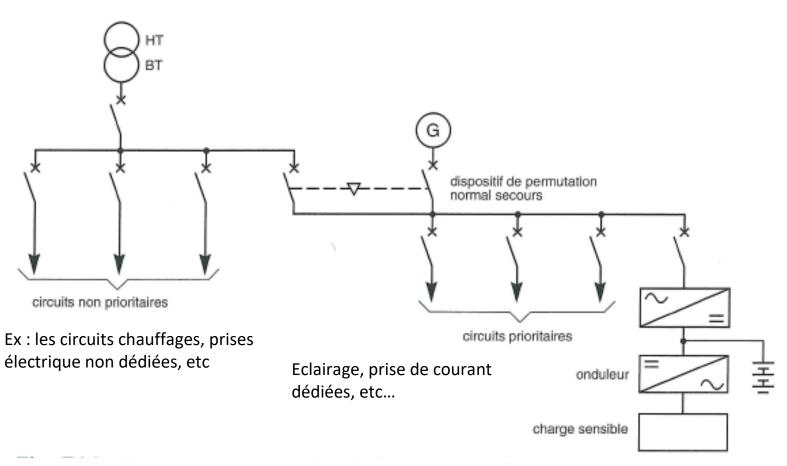

n'appartient pas à l'abonné 400kV 20kV 90kV 15kV 63kV 400V/230V Centrale Transformateur Ligne de transmission Transformateur Usage industriel Transformateur Abonné Basse électrique «haute-tension» 400V/230V Seules les 3 phases Abonné Haute sont distribuées Tension Le transformateur appartient pas à l'abonné 15kV 400/230V 90kV 400kV 63kV 20kV Abonné Basse Tension Centrale électrique 400V/230V Abonné Haute


Le transformateur

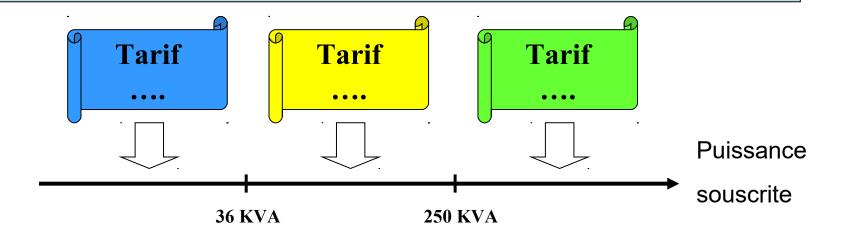

Soit le réseau schématique ci-dessous. Noter sur le schéma de principe en bas de diapositive, les potentiels de chacun des conducteurs ainsi que les différences de potentiel

2 - Prise de terre



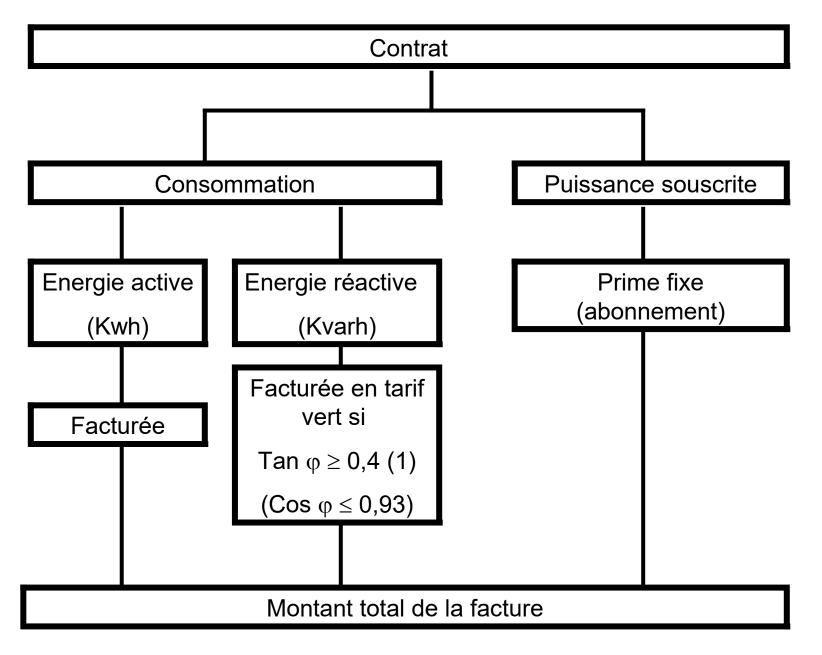


3 - Structure d'une installation électrique

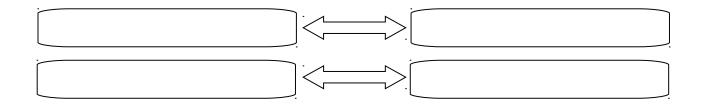


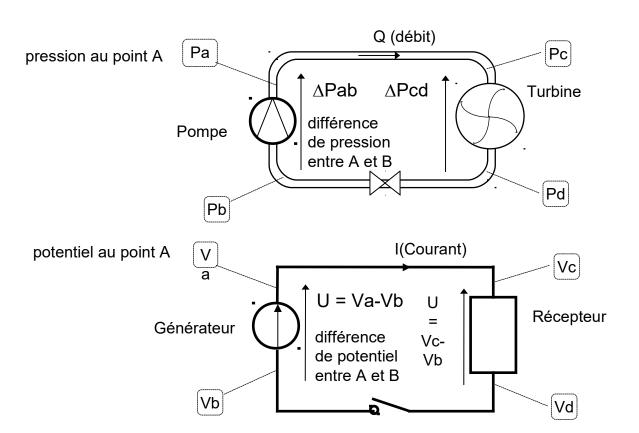
<u>Distribution avec secours et charges sensibles</u>

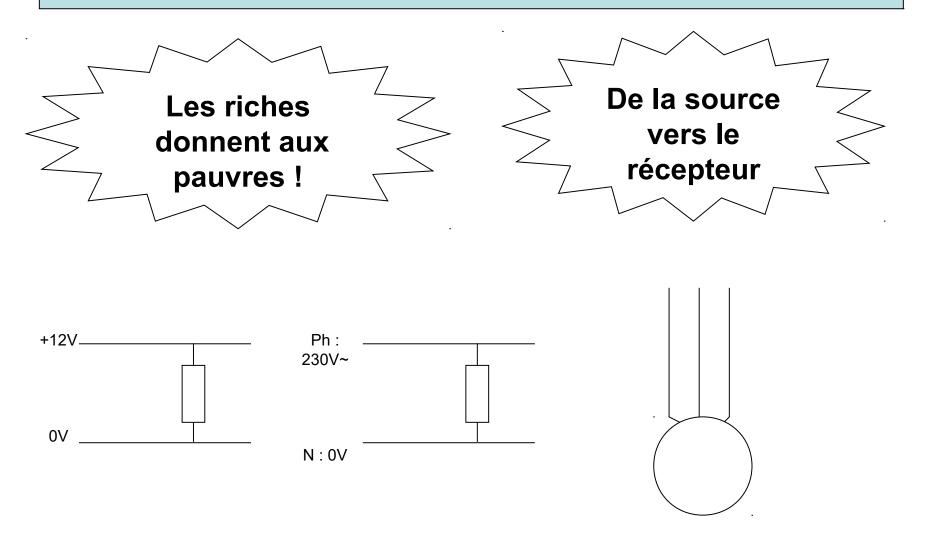
Ordinateurs, blocs opératoires, etc..


4 - Tarifs électriques

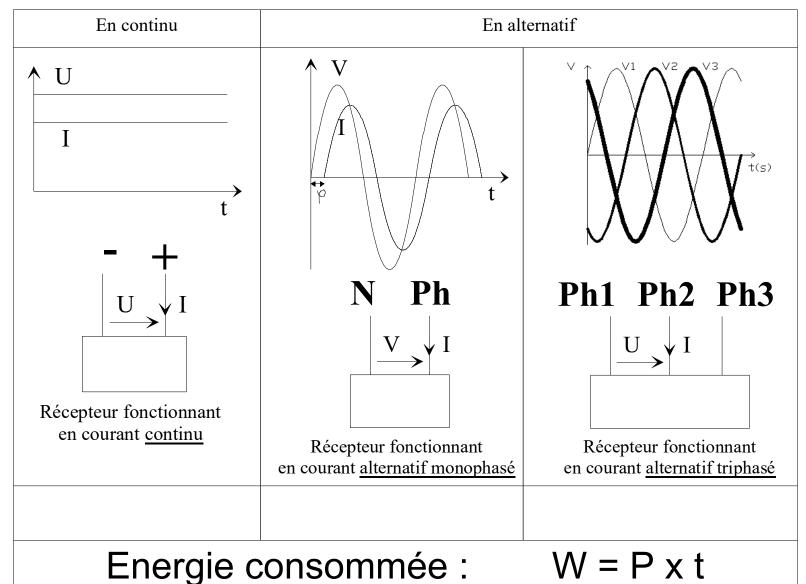
Chaque tarif est composé d'options tarifaires

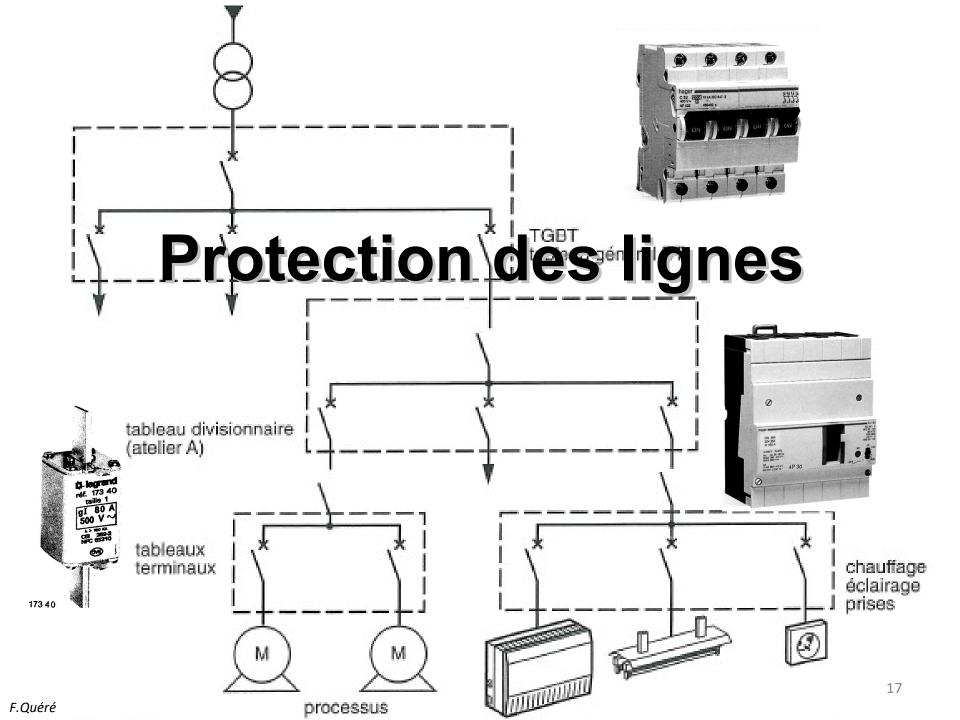

Exemple: Tarif Bleu


- Base ⇒1 seul coût du Kwh
- Heures Creuses/ Heures Pleines ⇒2 coûts du Kwh
- Tempo ⇒3 couleurs de jours avec dans chaque couleur des heures creuses et des heures pleines


(1) En d'autres termes, Edf nous autorise à consommer en énergie réactive l'équivalent de 40% de l'énergie active consommée.

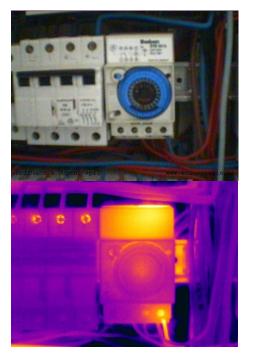
5 – Tension, courant, puissance et énergie

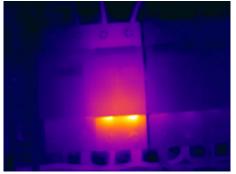


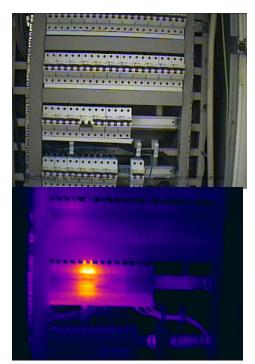

5.1 - Conventions

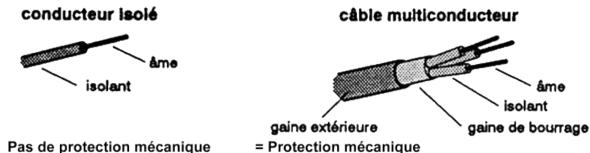
5.2 - U, I, P, W

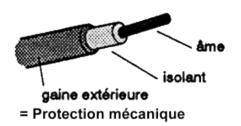



15





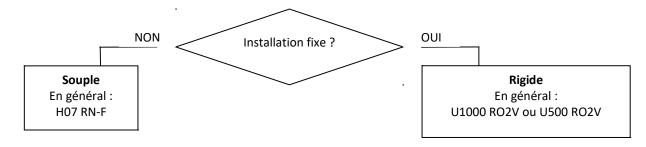




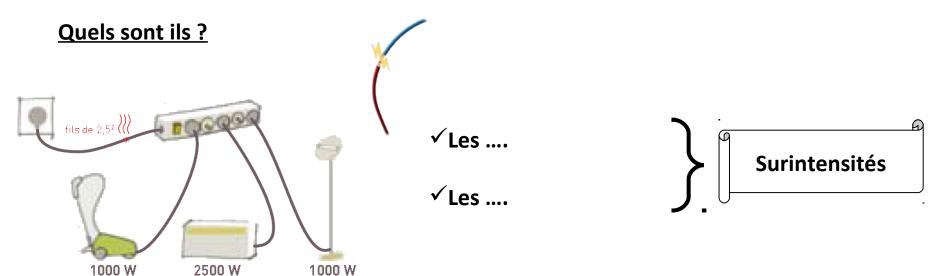
1 - Câbles et conducteurs : La différence

câble monoconducteur

as de protection mecanique


Conducteur =

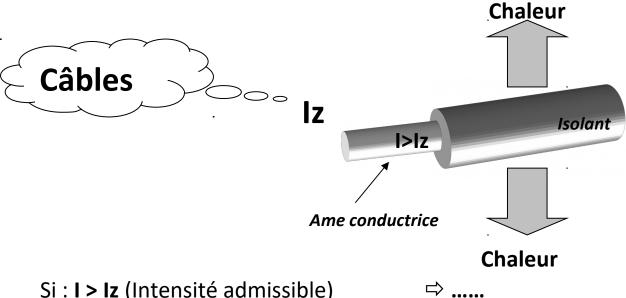
Câble =


L'âme est soit en <u>cuivre</u> ou en <u>aluminium</u>

On réserve l'aluminium pour les grosses sections

<u>Câble rigide ou souple?? L'éternelle question! :</u>

2 - Défauts d'origine électrique


Quelles en sont les conséquences ?

Electrocution

Surcharge = un peu trop de courant

Si : I > Iz (Intensité admissible)

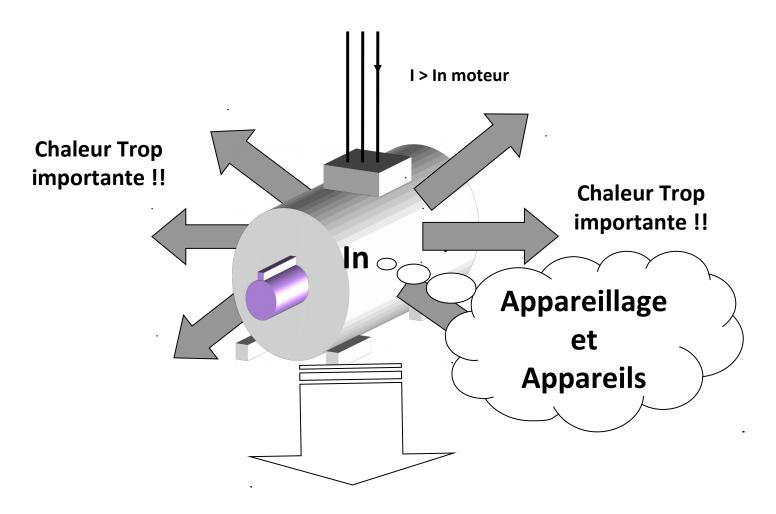
l'isolant

court-circuit

⇒ Destruction de

⇒ Apparition d'un

ou d'un défaut d'isolement

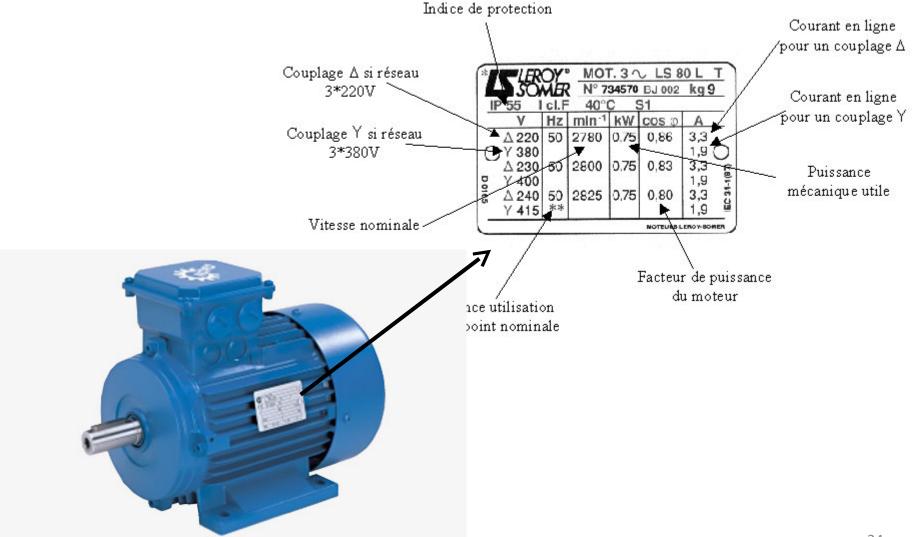

A partir du tableau ci-dessous et de l'annexe 7, donner l'intensité admissible pour les câbles suivants :

- U1000 RO2V 4G1,5 →
- H07 RN-F 2x2,5 →.....

On définira l'intensité admissible en mode de pose B (lettre de sélection) qui correspond au mode de pose le plus contraignant.

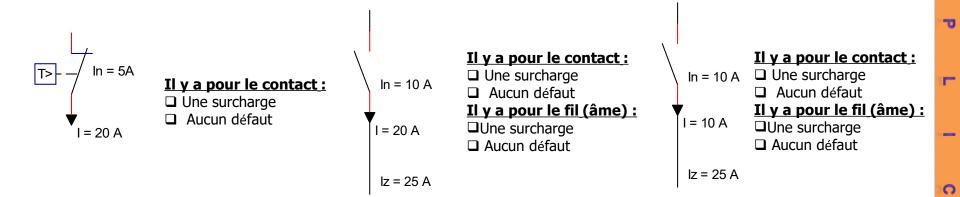
		isolant	isolant et nombre de conducteurs chargés (3 ou 2)								
			caoutchouc ou PVC			butyle ou PR ou éthylène PR					
lettre de	В	PVC3	PVC2		PR3		PR2				
sélection	С		PVC3		PVC2	PR3		PR2			
	E			PVC3		PVC2	PR3		PR2		
	F				PVC3		PVC2	PR3		PR2	
section	1,5	15,5	17,5	18,5	19,5	22	23	24	26		
cuivre	2,5	21	24	25	27	30	31	33	36		
(mm²)	4	28	32	34	36	40	42	45	49		
	6	36	41	43	48	51	54	58	63		
	10	50	57	60	63	70	75	80	86		
	16	68	76	80	85	94	100	107	115		
	25	89	96	101	112	119	127	138	149	161	
	35	110	119	126	138	147	158	169	185	200	
	50	134	144	153	168	179	192	207	225	242	
	70	171	184	196	213	229	246	268	289	310	
	95	207	223	238	258	278	298	328	352	377	
	120	239	259	276	299	322	346	382	410	437	

On remarque que les câbles PVC ont les intensités admissibles les plus faibles. Si on devait retenir une seule colonne, laquelle serait ce?

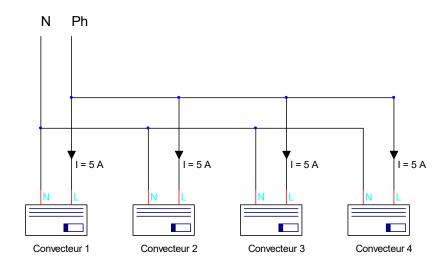


Risque de destruction du vernis isolant des enroulements du moteur

Si $I > In (Intensité nominale) \Rightarrow$


A partir de la plaque signalétique d'un moteur ci-dessous, déterminer l'intensité nominale à ne pas dépasser. (Le réseau est 400V/230V).

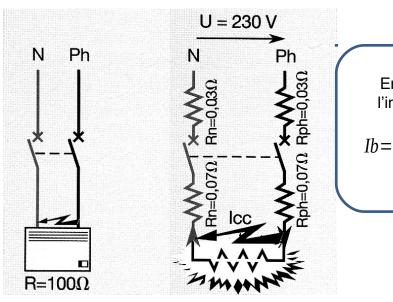
• →



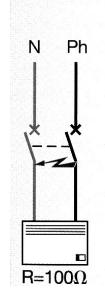
S

Applications

Tous les fils ont une section de 1, 5 mm² (Iz = 15.5 A). Surligner les portions de fils en surcharge électrique.

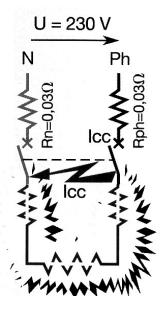

D

Z


CO

Court-circuit = Beaucoup trop de courant

Illustration du phénomène de court-circuit

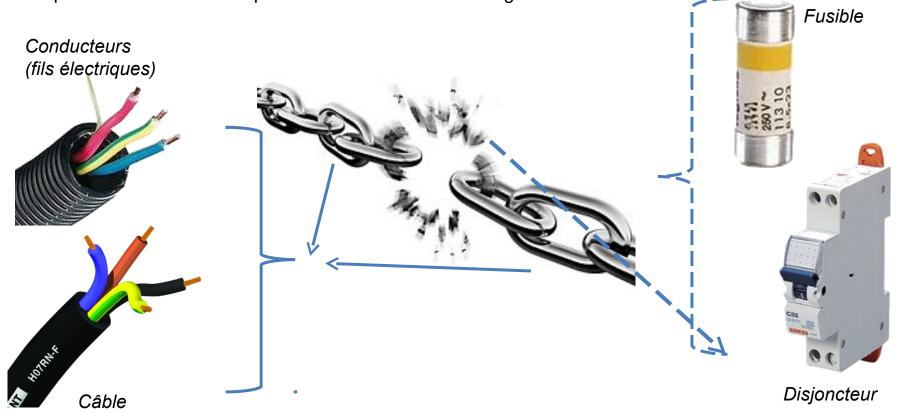


En fonctionnement normal. l'intensité d'emploi lb vaut :

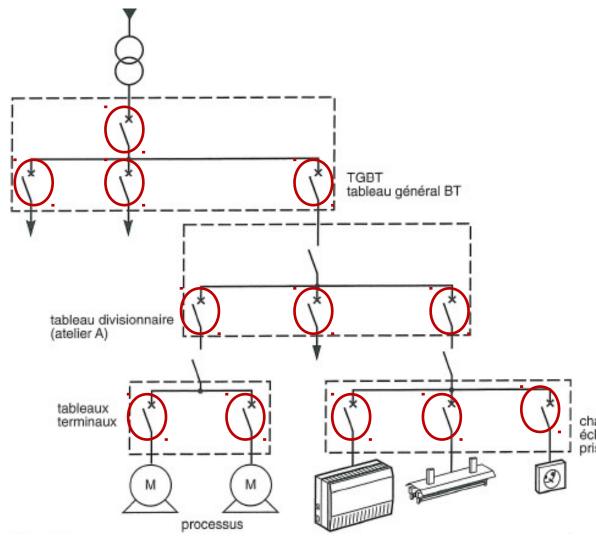
Dans le cas d'un court-circuit près du

récepteur l'intensité de court-circuit vaut :

Dans le cas d'un court-circuit près du récepteur l'intensité de court-circuit vaut :


$$Ik =$$

$$Ik =$$


On retiendra que

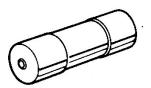
3 - Le **maillon faible** de l'installation électrique : Les fusibles ou disjoncteurs

Toute installation électrique est sujette à des défauts électriques de type <u>surcharge</u> ou <u>court-circuit</u>! Il est donc nécessaire de prévoir un <u>maillon faible</u> dans la chaine de transfert de l'énergie pour éviter que ce ne soient les fils qui fondent et ne soient à changer!!

<u>Question</u>: on dit souvent « qui peut le plus, peut le moins »! Cette expression est-elle valable pour une protection électrique (maillon faible)?

Maillons faibles

A l'origine de chaque circuit on aménage un fusible ou un disjoncteur (ici disjoncteur) jouant le rôle du maillon faible. En cas de défaut (surcharge ou court-circuit) c'est à cet endroit que ça doit « sauter ».


Le « maillon faible » est obligatoire à l'origine de chaque circuit ou dès qu'il y a un changement de section de conducteurs (ex : on passe de chauffage 4mm² à 2mm²)

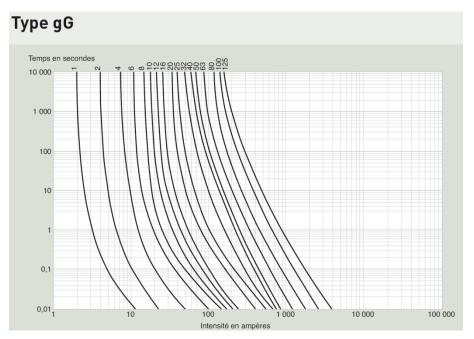
prises

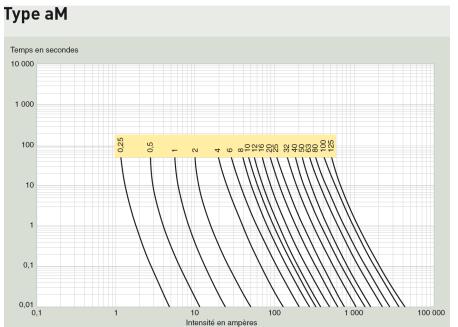
3.1 - Protection par fusible

(destruction = nécessité de remplacement du fusible)

Les cartouches fusibles :

Cylindrique


A couteau


	Protect	tion contre	
<u>Cartouches</u> <u>Fusibles</u>	Surcharges Courts-circuits		<u>Usage</u>
gG			Protection des câbles
aM			Protection des câbles alimentant moteurs

Déterminer le temps de fusion d'un fusible 10A gG si il est parcouru par un courant d'emploi Ib = 40 A

Déterminer le temps de fusion d'un fusible 10A aM si il est parcouru par un courant d'emploi Ib = 40 A

Cf. Annexe 6 et 7 pour les mêmes graphes en plus grand

O

Pour choisir une fusible gG il faut satisfaire à plusieurs critères :

$In_{fusible} \le Iz_{cable}$	Cette condition est automatiquement respectée en utilisant les tableaux annexes 3 et 4.
PdC ≥ Ik PdC : Pouvoir de Coupure (intensité maximale que l'appareil de protection (maillon faible : ici fusible) peut couper dans mettre feu à l'installation électrique.	Cette condition est quasi systématiquement satifaite pour les fusibles gG car ces derniers ont en général un PdC≥50kA voire 100kA!!

<u>Utilisation des annexes 3 et 4 pour sélectionner le calibre (intensité nominale) du fusible et la section des conducteurs protégés :</u>

CIRCUITS MONOPHASES 230V REGIME NORMAL

6 A

u% 1

4 A

Fusible

Pour des chutes de tension tolérées supérieures, multiplier les longueurs (2% : Multiplier par 2 ; 3% : Multiplier par 3...)

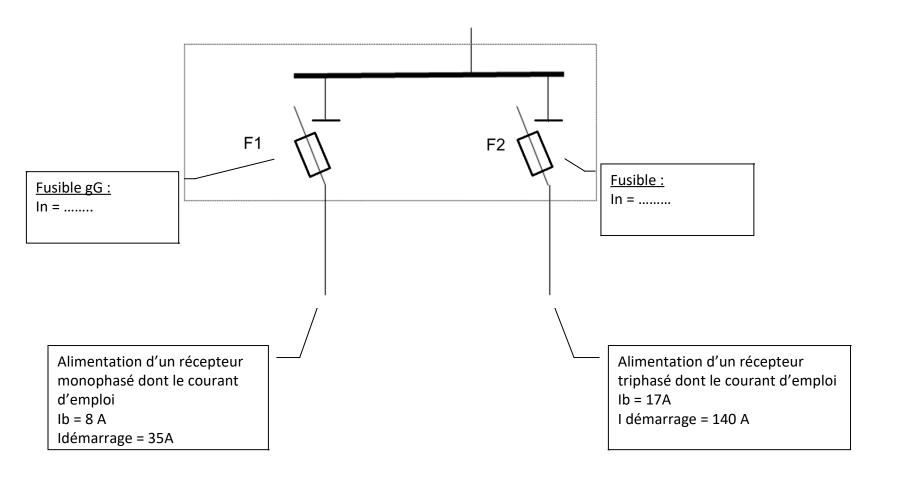
20 A

10 A

Disjoncteur	6 A	10 A	16 A	20 A	32 A	40 A	50 A	80 A	100 A	125 A	
INTENSITE					SECTI	ONS					
	0,75 mm ²	1 mm ²	1,5 mm²	2,5 mm ²	4 mm²	6 mm²	10 mm²	16 mm²	25 mm²	35 mm²	
1 A	38	50	75	125	200	300	500	800	1250	1750	
2 A	19	25	38	63	100	150	250	400	625	875	
3 A	13	17	25	42	(Extrait annexe 3) Exemple : Soit un câble alimentant un récepteur monophasé. Le courant nominal du récepteur est de 12A. La section du câble à utiliser est de 1,5A et le fusible aura un calibre						
4 A	9	13	19	31							
5 A	8	10	15	25							
6 A	6	8	13	21							
7 A		7	11	18		u cable a utilis	er est de 1,5F	t et le lusible à	aura un canbre	250	
8 A		6	9	16	de 10A gG	'agit iai da la a	action thormiqu	e ne tenant pas	o compto do la	219	
9 A		6	8	14	chute de tens	•	ecuon menniqu	e ne tenant pas	s comple de la	194	
10 A		5	8	13		1011:				175	
12 A			6	10	17	25	42	67	104	146	
. 14 A			5	9	14	21	36	57	89	125	

25 A

32 A


50 A

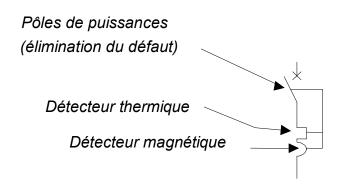
63 A

100 A

80 A

• Pour chacun des départs ci-dessous déterminer à l'aide des annexes 3 et 4 la section des câbles susceptibles d'alimenter les récepteurs sans tenir compte des chutes de tensions ainsi que les calibres des fusibles.

C

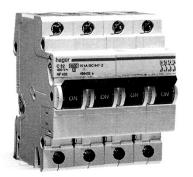

Z

CO

3.2 - Protection par disjoncteur

(disjonction = possibilité de réamement)

Les disjoncteurs magnéto-thermiques

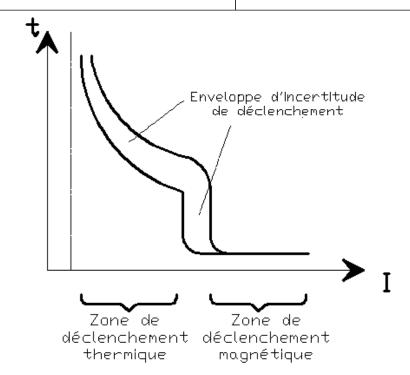


	Protection contre						
Détecteurs	Surcharge	Court-circuit					
Thermique							
Magnétique							
Magnéto-thermique							

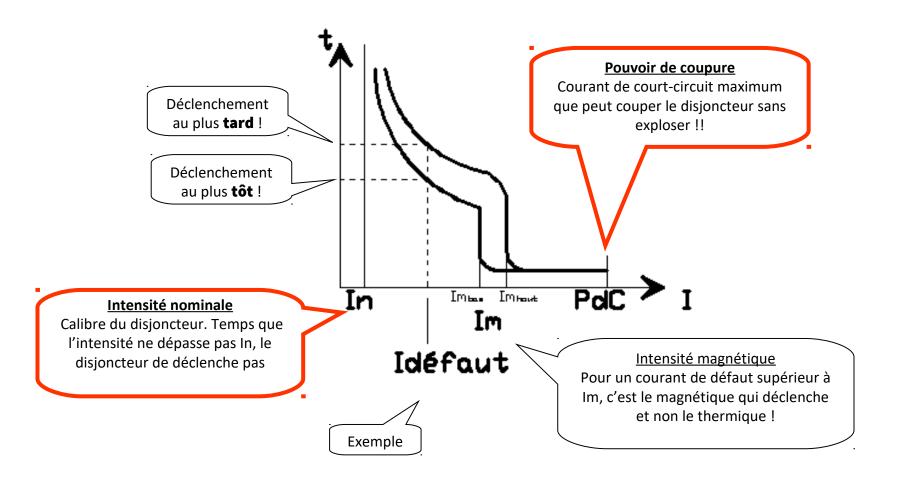
Disjoncteur divisionnaire

(encore appelé disjoncteur modulaire)

In et Im sont fixes


In : Courant Nominal (Intensité au-delà de la quelle le « Thermique » déclenche) Im : Courant Magnétique (Intensité au-delà de la quelle le « Magnétique » déclenche)

Disjoncteur à usage général


(encore appelé disjoncteur boîtier moulé)

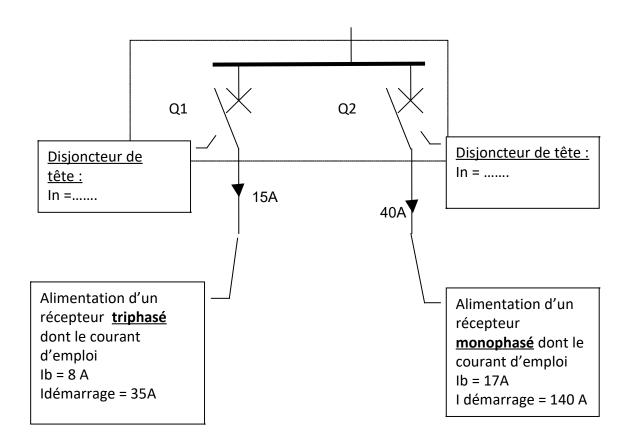
In et Im sont variables (on parle alors de Irth et de Irm)

Courbes de disjoncteurs divisionnaires

Pour choisir un disjoncteur il faut satisfaire à plusieurs critères :

$ln_{disjoncteur} \leq lz_{cable}$	Cette condition est automatiquement respectée en utilisant les tableaux annexes 3 et 4.
PdC ≥ Ik	Cette condition est systématiquement à vérifier !
PdC : Pouvoir de Coupure (intensité maximale que l'appareil de protection (maillon faible : ici disjoncteur) peut couper dans mettre le feu à l'installation électrique.	(Plus loin dans le cours je vous apprendrais à déterminer Ik pour choisir le PdC)

<u>Utilisation des annexes 3 et 4 pour sélectionner le calibre (intensité nominale) du disjoncteur et la section des conducteurs protégés :</u>

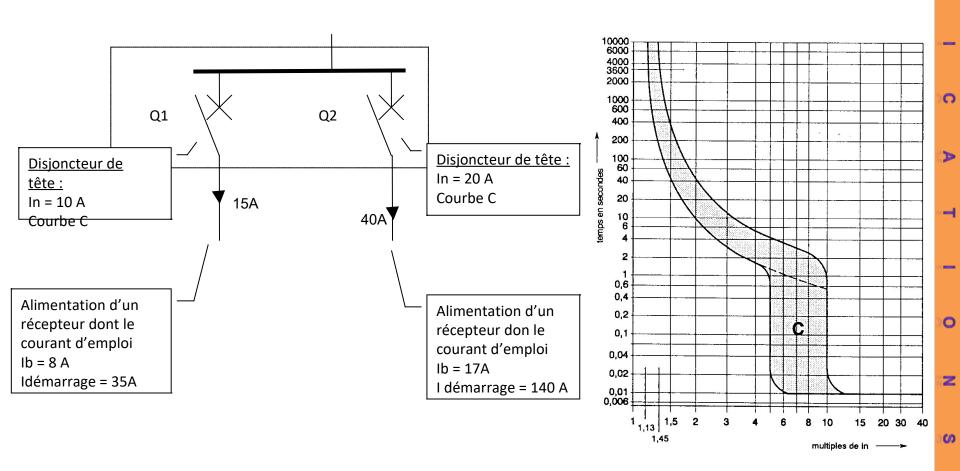

CIRCUITS MONOPHASES 230V REGIME NORMAL

u% 1

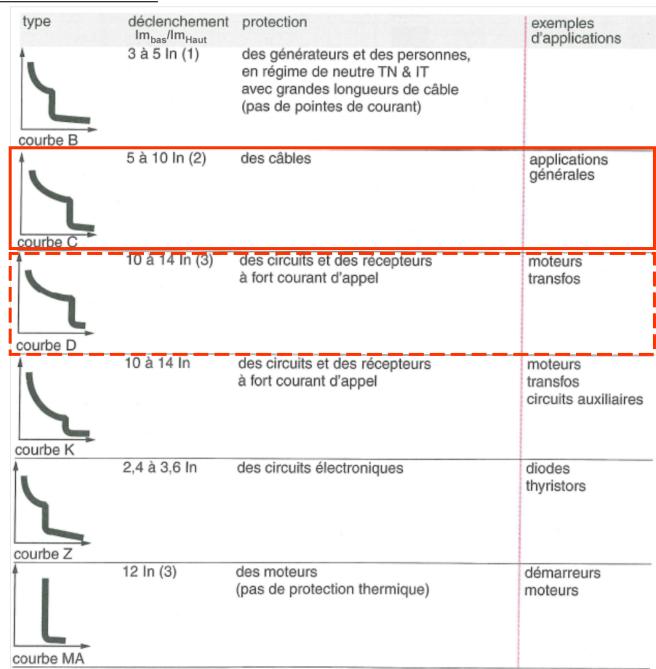
Pour des chutes de tension tolérées supérieures, multiplier les longueurs (2% : Multiplier par 2 ; 3% : Multiplier par 3...)

Fusible	4 A	6 A	10 A	20 A	25 A	32 A	50 A	63 A	80 A	100 A		
Disjoncteur	6 A	10 A	16 A	20 A	32 A	40 A	50 A	80 A	100 A	125 A		
INTENSITE				ļ 1	SECT	ONS						
	0,75 mm ²	1 mm²	1,5 mm ²	2,5 mm ²	4 mm²	6 mm²	10 mm²	16 mm²	25 mm²	35 mm²		
1 A	38	50	75	125	200	300	500	800	1250	1750		
2 A	19	25	38	63	100	150	250	400	625	875		
3 A	13	17	25	42	(Extrait annexe 3)							
4 A	9	13	19	31	,							
5 A	8	10	15	25	courant nominal du recepteur est de 12A. La section du câble à utiliser est de 1,5A et le fusible aura un calibre de 16A Attention : il s'agit, ici de la section thermique ne tenant pas compte de la							
6 A	6	8	13	21								
7 A		7	11	18								
8 A		6	9	16								
9 A		6	8	14								
10 A		5	8	13	Chale de lens	SIOI1:		<u>~~</u>		175		
12 A			6	10	17	25	42	67	104	146		
□ 14 A			5	9	14	21	36	57	89	125		

• Pour chacun des départs ci-dessous déterminer à l'aide des annexes 3 et 4 la section des câbles susceptibles d'alimenter les récepteurs ainsi que les calibres des disjoncteurs. Ne pas tenir compte des chutes de tension.

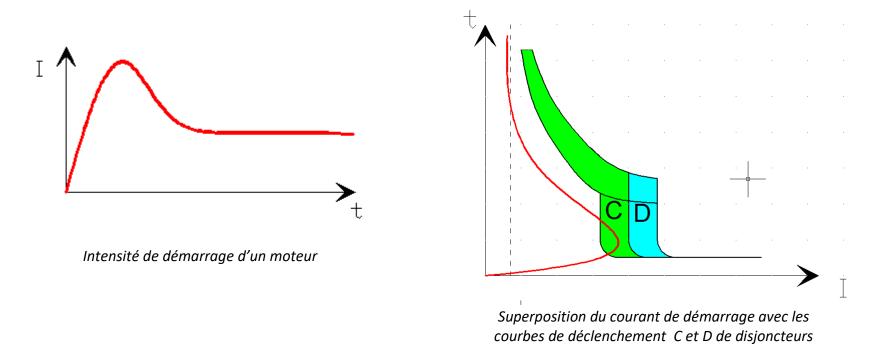

D

C

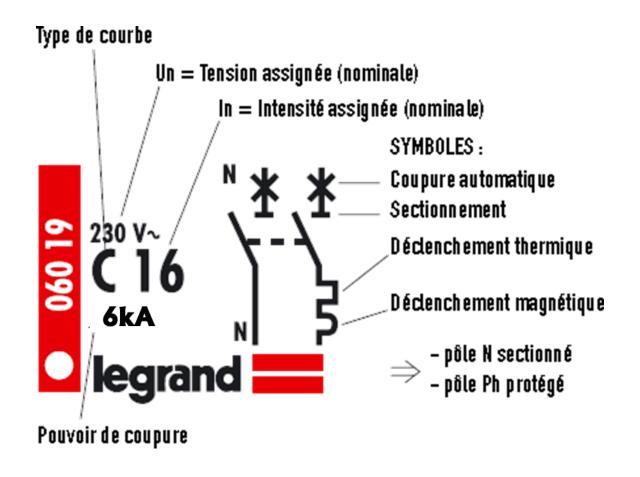

Z

S

- Indiquer si dans le cas ci-après les circuits sont en surcharge.
- La protection doit-elle logiquement déclencher? Pourquoi?
- Le disjoncteur Q1 a une intensité nominale (In) supérieure à celle déterminée à la diapo précédente! Est-ce grave?
- A partir de la courbe de disjonction ci-dessous, déterminer le temps de coupure des deux disjoncteurs ci-dessous.
- Donner le temps de coupure pour les deux disjoncteurs pour un courant de court-circuit de 3kA en aval de ceux-ci.


Courbes de déclenchement

Justification des courbes C et D


Au démarrage, les moteurs absorbent de 2 à 8 fois leur courant nominal. La norme conseille de prendre le courant de démarrage égale à 6xIn du moteur en cas d'absence d'information.

Ces intensités de démarrages peuvent être sources de déclenchements intempestifs des disjoncteurs.

On constate que dans le cas présent, si le départ est équipé d'un disjoncteur courbe C, ce dernier est susceptible de déclencher lors du démarrage. La solution est de passer sur une courbe D de même calibre.

<u>Décoder les informations apposées sur un disjoncteur</u>

Vérifier dans les deux cas suivants le non déclenchement de la protection électrique (ici assurée par disjoncteur) lors des démarrages des groupes d'eau glacée Q1 Q2 Disjoncteur de tête : Disjoncteur de tête : In = 32 AIn = 32 ACourbe C Courbe C 10000 4000 3600 2000 Alimentation d'un 1000 grouge d'eau glacée. 400 Alimentation d'un grouge 1b = 26 A200 d'eau glacée. I démarrage = 143 A 100 60 1b = 30 AI démarrage = 170 A 20 0,6 0,4 0,2 0,1 0,04 0,02 0,01 0,006 multiples de in

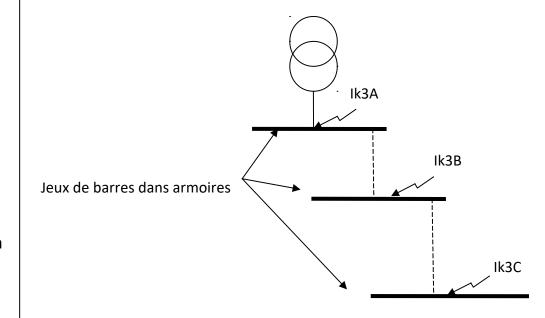
C

3.2.1 – Détermination de l'Ik pour le choix du PdC des disjoncteurs

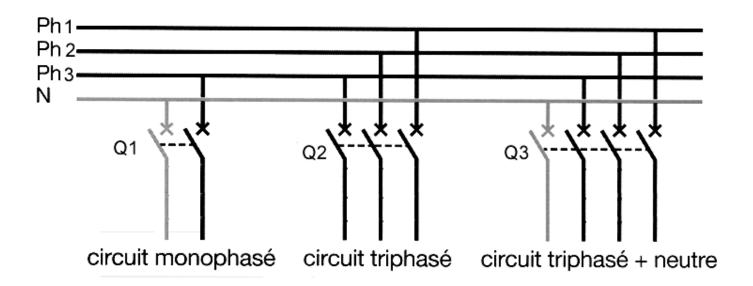
On a vu précédemment que pour choisir un disjoncteur il fallait respecter la condition : PdC_{Disjoncteur} ≥ lk.

Rappel : Le PdC est l'intensité maximale que le dispositif de protection peut interrompre sans mettre le feu à l'installation électrique...il est important de ne pas négliger cette phase du dimensionnement!

Il faut absolument retenir que :

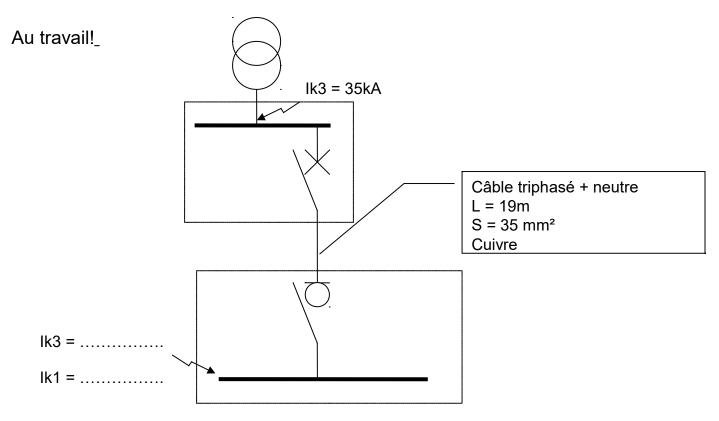

- ✓ Le courant de court-circuit est limité par la résistance des câbles.
- ✓ Plus le court-circuit à lieu près de la source et plus il est important

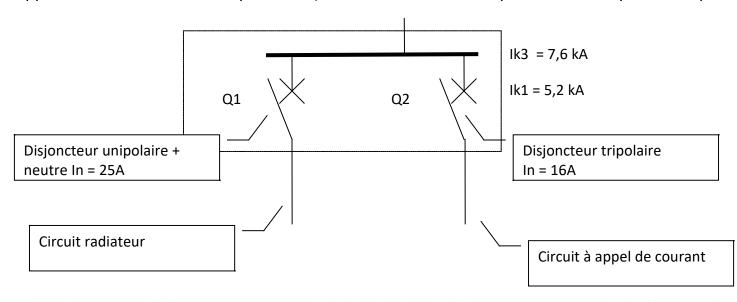
✓ Que l'lk3 > lk1


Ik3: Court-circuit triphasé (les 3 phases de touchent)

Ik1 : Court-circuit monophasé(entre la phase touche le neutre)

- ✓ Un courant de court-circuit est considéré égale en tout point d'une armoire
- ✓ On cherche à connaitre l'Ik<u>1</u> pour le choix des disjoncteurs alimentant des circuit <u>monophasés</u>.
- ✓ On cherche à connaître l'Ik<u>3</u> pour le choix des disjoncteurs alimentant des circuit <u>triphasés</u> ou <u>tétraphasés</u>
- ✓ Anciennement l'Ik s'appelait Icc (Icc1 et Icc3)


✓ Sur le schéma ci-après, indiquer les courts-circuits susceptibles de se produire sur chacun des circuits :


[√] Indiquer lequel d'Ik1 ou d'Ik3 il faut retenir pour choisir Q1, Q2 et Q3

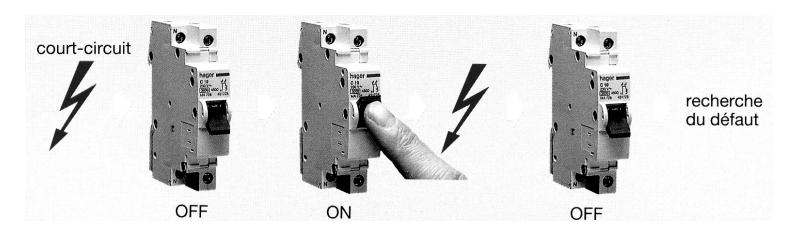
Le principe de détermination des lk1 et lk3 est souvent le suivant :

A partir de l'Ik3 connu dans l'armoire divisionnaire supérieure, on va pouvoir déterminer l'aide de **l'annexe 1** les IK3 et IK1 de l'armoire divisionnaire dans laquelle nous avons des disjoncteurs à installer.

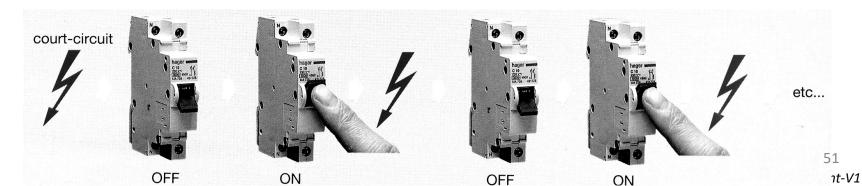
Pour les disjoncteurs Q1 et Q2, donner le type de disjoncteur (Déclic, DT40, ...) qui conviendrait pour notre application dans les deux cas possibles (armoire accessible à du personnel non qualifié et qualifié)

	tarifs		courbes de				calibres	tension maxi	pouvoir de coupure					
	bleu jaune vert	vert	déclenchement				(A)	d'emploi	(kA)					
		С	В	D	MA		(V CA)	3 4,5 5 6 7,5 10 15 20 25 50						
Déclic				-				2 à 32	230		A50			
DT40								1 à 40	230/400		A54			
DT40N								1 à 40	230/400		A55			
XC40	9	trice						10 à 40	415	sous 415 V	A172			
C60N					=			0,5 à 63	440	sous 415 V	A65			
C60N								0,5 à 63	440	sous 415 V	A66			

selon norme NF EN 60898 (C 61-140) marqué en face avant tel que : 3000 selon norme NF EN 60947-2 (C 63-120) marqué en face avant tel que : 5 kA IEC 947.2

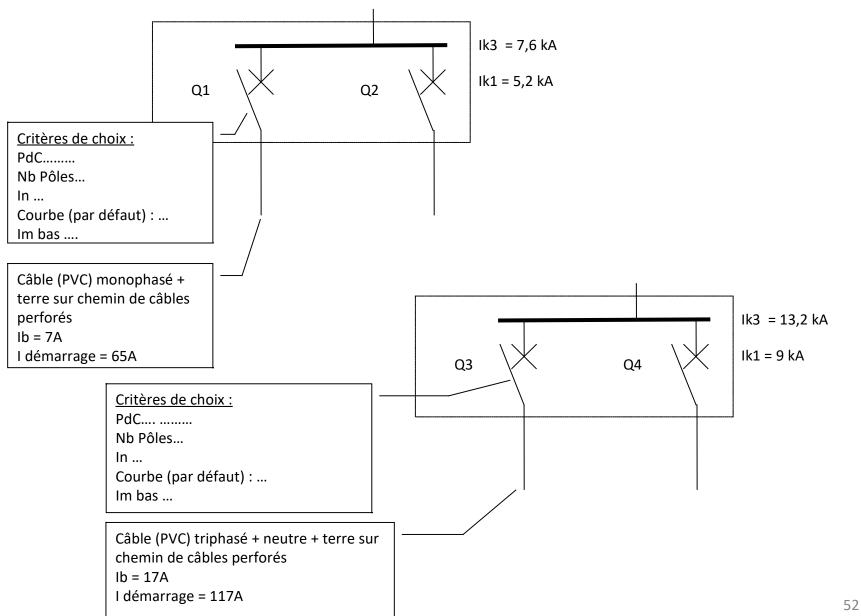

Explications: 2 diapos plus loin

C


Pourquoi deux pouvoirs de coupure (PdC) ?

- ✓ Le choix de la norme se fait en fonction des compétences des personnes <u>susceptibles</u> de réarmer le disjoncteur.
- ✓ Ne nombreux professionnels ne travaillent qu'avec le PdC non encadré car quasi toutes les armoires sont fermées à clé.

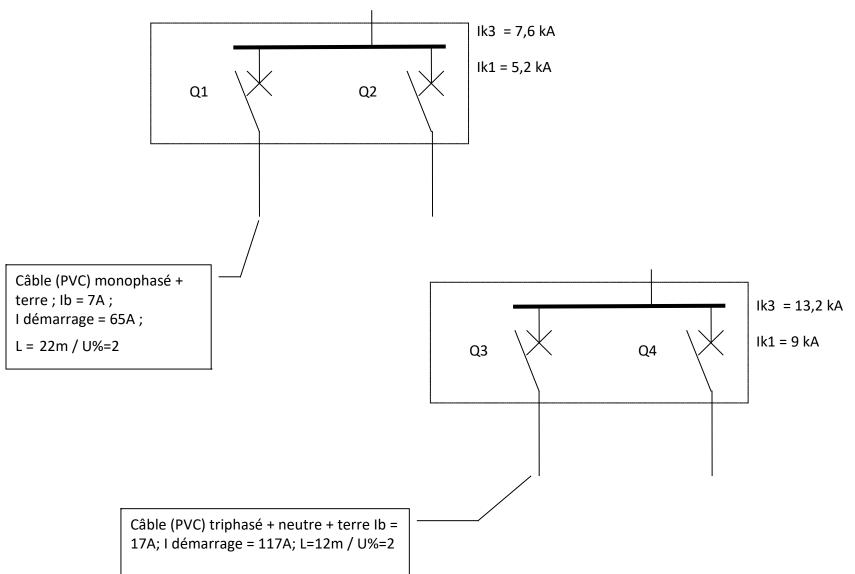
✓ Réarmement sur court-circuit par du Personnel qualifié ⇒ PdC non encadré



✓ Réarmement sur court-circuit par du personnel non qualifié ⇒ PdC encadré

F.Quéré

Donner les <u>critères de choix</u> pour les disjoncteurs Q1 et Q3

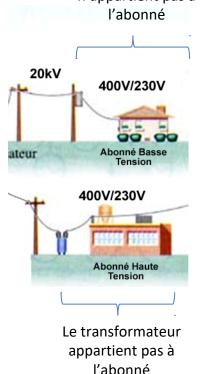

C

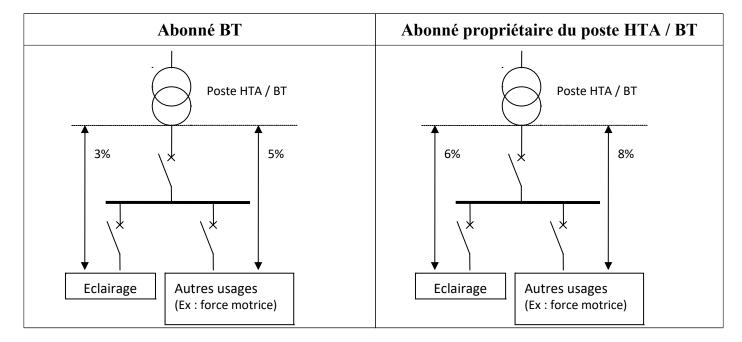
Z

S

Applications : choisir le disjoncteur et la section du câble

Vous réaliserez le choix dans les deux deux cas possibles (armoire accessible à du personnel non qualifié et qualifié)


C


Chute de tension...

Si le câble est trop long \rightarrow trop de chute de tension \rightarrow dysfonctionnement des récepteurs

Le transformateur n'appartient pas à l'abonné

Préambule : Vous avez déjà choisir des sections de câble, il s'agissait de la section thermique. Parfois cette section est insuffisante et crée trop de chute de tension. Choisir une section de câble c'est aussi de s'assurer que la chute de tension est raisonnable!

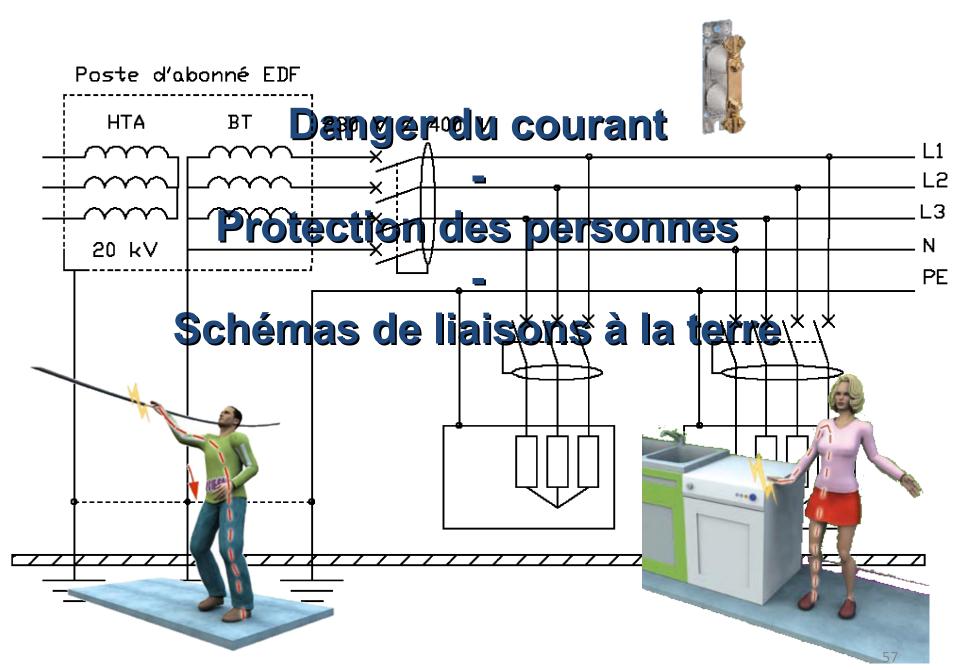
Question récurrente : combien de pourcentage de chute de tension nous reste t-il pour dimensionner notre câble?

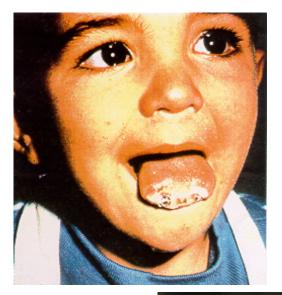
Elément de réponse : ça dépend!!

Pour les pessimistes on partira sur une chute de tension de 1% pour dimensionner le câble, pour les autres on prendra une chute de tension de 2% ce qui est raisonnable. Certains dimensionnent à partir d'une chute de tension de 3 à 5%!! De belles économies sont à la clé....au risque de temps en temps qu'il faille retirer le câble!

Les annexes 3 et 4 sont donnés pour une chute de tension de 1% mais peuvent être utilisés pour n'importe quelle valeur (par exemple 3%). Il suffit pour cela de multiplier les valeurs du tableau par 3

CIRCUITS MONOPHASES 230V REGIME NORMAL


u% 1


Pour des chutes de tension tolérées supérieures, multiplier les longueurs (2% : Multiplier par 2 ; 3% : Multiplier par 3...)


			•		•		•	. ,			
Fusible	4 A	6 A	10 A	20 A	25 A	32 A	50 A	63 A	80 A	100 A	
Disjoncteur	6 A	10 A	16 A	20 A	32 A	40 A	50 A	80 A	100 A	125 A	
INTENSITE	INTENSITE SECTIONS										
	0,75 mm ²	1 mm²	1,5 mm²	2,5 mm ²	4 mm²	6 mm²	10 mm²	16 mm²	25 mm²	35 mm²	
1 A	38	50	75	125	200	300	500	800	1250	1750	
2 A	19	25	38	63	100	150	250	400	625	875	
3 A	13	17	25	42	67	Evemple	Choix d'	una protocti	on ot d'un a	sâblo	
4 A	9	13	19		50	_		une protecti			
5 A	8	10	15	25	40	parcourt	ı par un inte	ensité lb de	14 A de lor	igueur 14	
6 A	6	8	13	21	33	m.					
7 A		7	11	18	29	Choix po	our <u>∆u% =1</u>	%:			
8 A		6	9	16	25			<u></u> (ou fusible 2	DEA) secti	on · 1mm²	
9 A		6	8	14	22	-		•	23A) – Secti	011 . 4111111	
10 A		5	8	13	20		<u>our ∆u% =2</u>				
12 A			6	10	17	⋰ ⊃Disjon	cteur 20A (ou fusible 2	0A) – sectic	on : 2,5mm²	
14 A			วิ		14		·		,		
16 A	•		5	8	13	Pomaro	مع دا : میں	tion « therm	iaue » est	de 1 5mm²	
18 A				7	11	•			•		
20 A				6	10		•	de 16A disjo			
25 A					8	mais le i	risque est d	l'avoir une c	hute de ten	sion trop	
30 A					7	importar	ite donc pa	s assez de t	ension à l'e	extrémité du	
35 A						importante donc pas assez de tension à l'extrémité du câble pour alimenter le récepteur.					
40 A		LONGU	EURS MAX	(IMALES F	REGIME	Cable po	ur ammente	i le recepte	ui.		
45 A					`						
50 A			NOR	WAL	 			10	20	33	
55 A		CHU	JTE DE TE	NSION DE	1%			15	23	32	
60 A				-				13	21	29	
65 A								12	19	27	
70 A								11	18	25	

ATTENTION : Pour les câbles alimentant les moteurs, vérifier la chute tension maximale au démarrage (Cf. Circuits monophasés 230V régime de démarrage).

Interdit en distribution (d'armoire vers armoire)

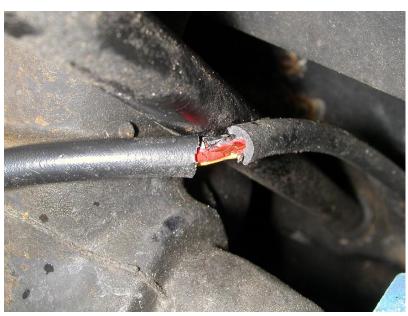
58

Danger du courant

Le contact direct est un contact d'une personne avec un conducteur ou des parties sous tension ayant pour conséquence le passage du courant à travers le corps. Les risques de contacts directs sont souvent dus à la présence de conducteurs apparents nus ou présentant des défauts d'isolants

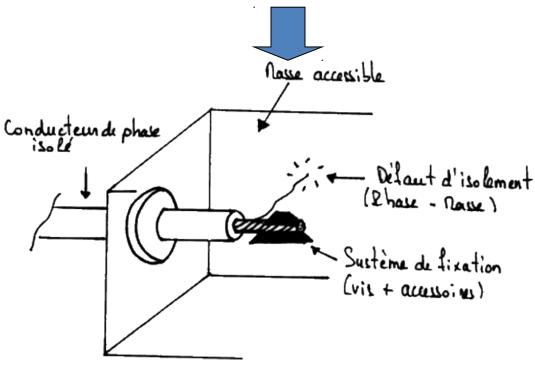
Le contact indirect est un contact d'une personne avec une masse mise accidentellement sous tension ayant pour conséquence le passage du courant à travers le corps. Il s'agit souvent de défauts d'isolement qui peuvent apparaître sur les masses des appareils électroménagers (machine à laver), les tuyauteries et autres pièces métalliques présentes dans le logement.

<u>Un peu de vocabulaire :</u>

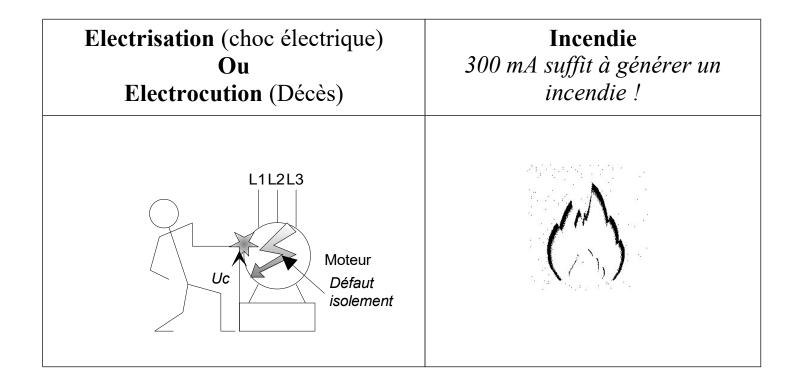

- **Electrisé** = choc lié au passage du courant (pas de décès)
- **Electrocuté** = Décès suite à une électrisation

59

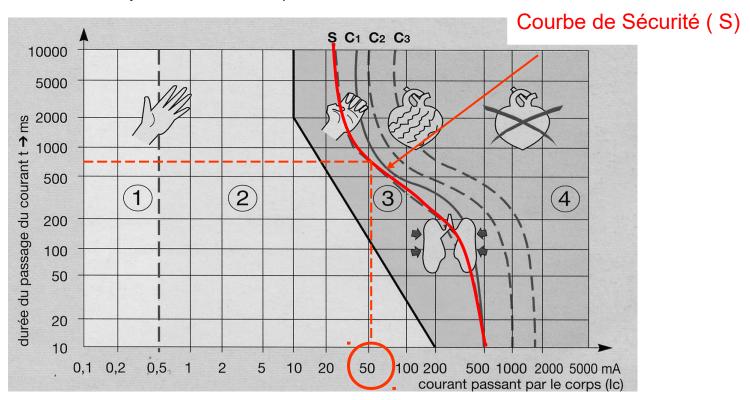
Ne pas confondre Défaut d'isolant Et Défaut d'isolement


Défaut **d'isolant**

Il s'agit d'une blessure sur la partie isolante d'un conducteur


Défaut d'isolement

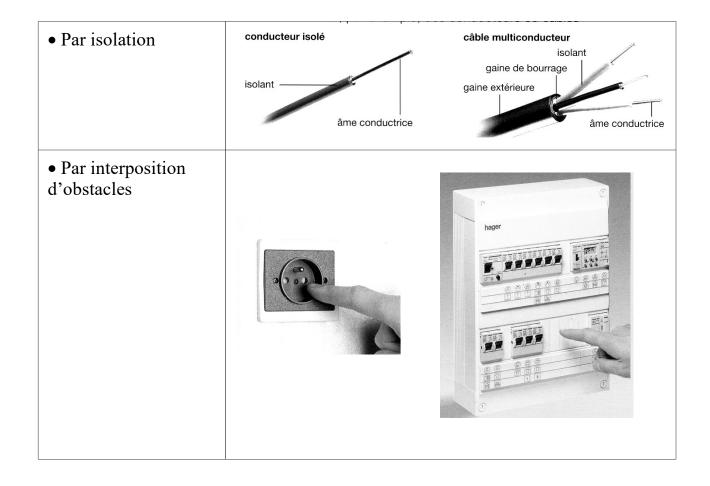
Un conducteur actif (phase ou neutre) touche la masse d'un appareil


Remarque : Dès lors qu'un fil touche une masse, le défaut d'isolant peut se transformer en défaut d'isolement....

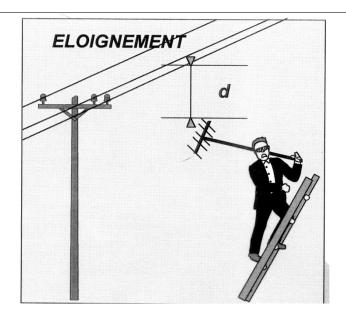
Défaut d'isolement = fuite de courant pouvant entraîner des risques

Risques pour les personnes

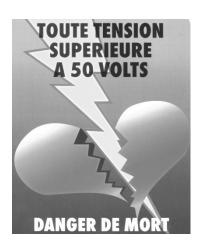
Le risque est fonction de l'intensité du courant ainsi que le temps pendant lequel le courant traverse le corps humain. C'est donc la **quantité de courant** qui **tue**!

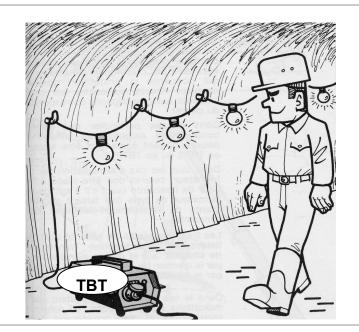

On a coutume de dire que 50mA tue! C'est vrai si toutefois le courant traverse le corps pendant 1seconde (1000ms=1s). On atteint ainsi la courbe dessinée en rouge qui représente le seuil de « non lâché ».

La règle d'or des anciens : Pour vérifier l'absence de tension, les anciens professionnels de l'électricité touchaient du <u>dos</u> de la main les fils électriques. La contraction musculaire liée au passage du courant leur permettait ainsi de se dégager rapidement! <u>METHODE A NE PAS FAIRE!!!Il existe aujourd'hui des appareils spécialement conçu pour vérifier l'absence de tension (VAT).</u>

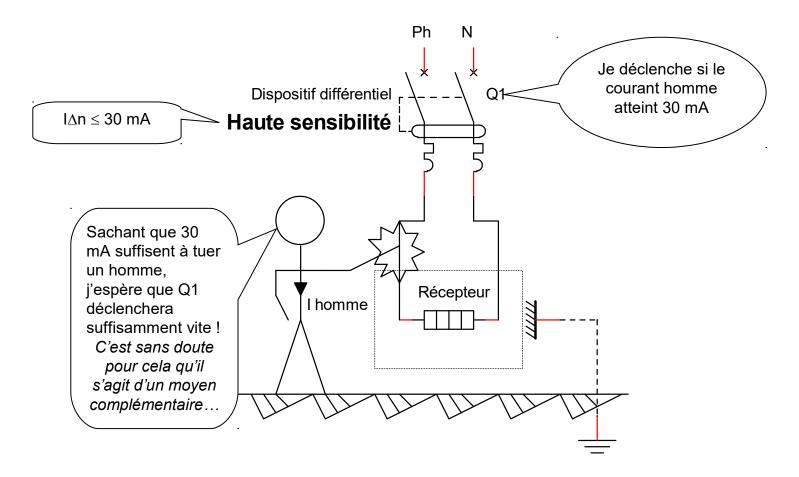

Anecdote : chaque fois que vous « prenez une bourre » en claquant la portière de votre voiture, c'est 60 A qui passent entre nos doigts et la carrosserie de la voiture ... vous n'en êtes pas mort pour autant!! Pourquoi?...

F.Quéré

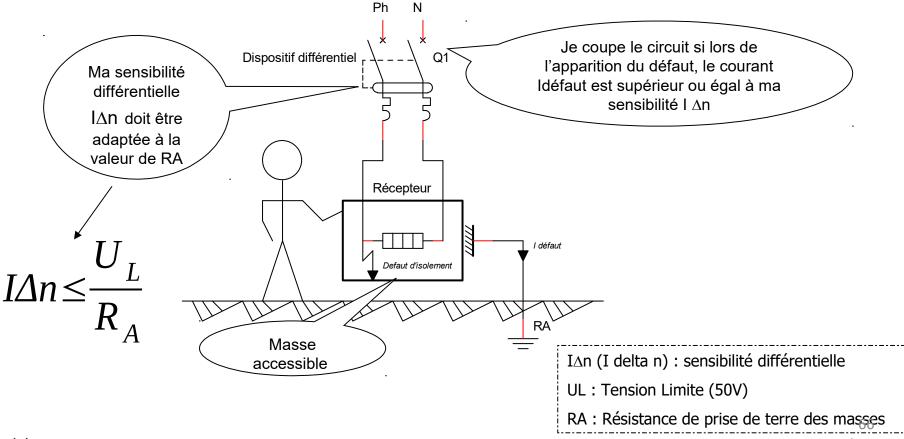

Protection des personnes contre les contacts directs

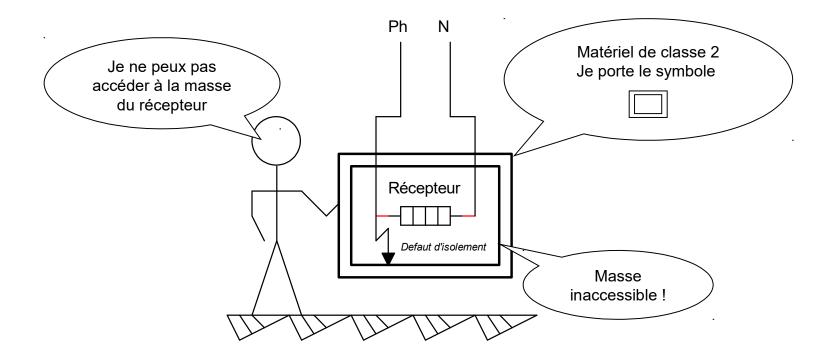


• Par éloignement

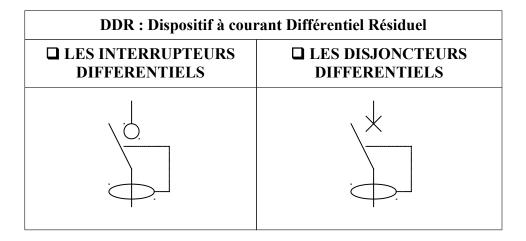

• En utilisant de la très basse tension $(U \le 50V)$

64


• Par utilisation de Dispositif à courant Différentiel Résiduel de Haute Sensibilité (DDR HS)


Il ne s'agit que d'un <u>moyen de protection complémentaire</u> au regard des autres moyens vus précédemment car la personne doit être électrisée avant que le différentiel haute sensibilité déclenche!!

Protection des personnes contre les contacts indirects


• Par <u>coupure automatique</u> de l'alimentation électrique par l'utilisation de <u>disjoncteur différentiel</u> ou <u>interrupteur différentiel</u> (de sensibilité > à la haute sensibilité = 30mA et en dessous)

• Par utilisation de matériel de classe 2

Disjoncteur différentiel et Interrupteur différentiel

	Protection contre						
	Défaut d'isolement	Surcharge	Court-circuit				
Interrupteur Différentiel	X						
Disjoncteur Différentiel	X	X	X				


Schémas de liaison à la terre (Régimes de neutre)

Situation du neutre)	Situation des masses			
1ère lettre		2 ^{ème} lettre			
Le neutre de l'alimentation est connecté	Т	Т	Les masses de l'installation sont reliées directement à la terre		
directement à la terre	Т	N	Les masses de l'installation sont reliées au neutre de l'installation lui-même relié à la terre		
Le neutre de l'alimentation est <u>Isolé</u> ou <u>Impédant</u> par rapport à la terre	I	T	Les masses de l'installation sont reliées directement à la terre		

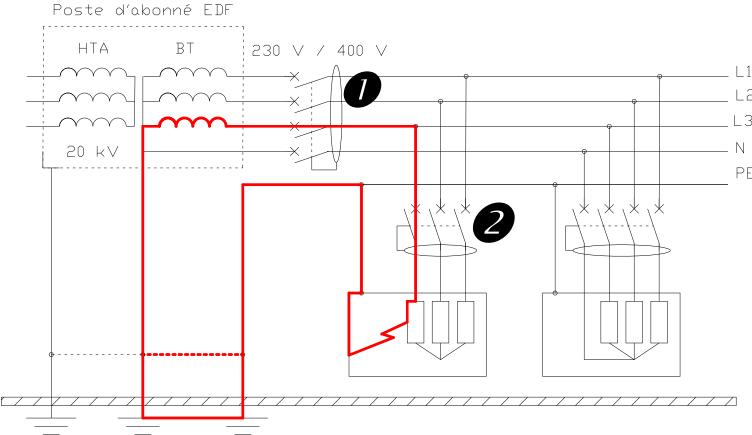

Impédant : relié par une résistance à la terre.

Schéma TT neutre à la Terre / masse à la Terre

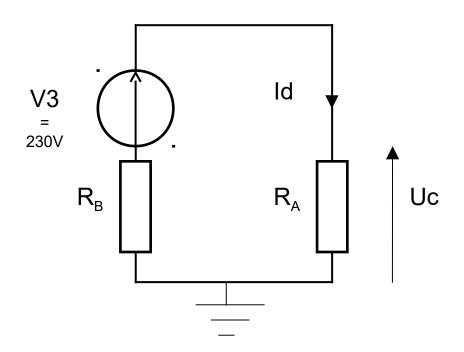

La protection des personnes repose sur l'utilisation de dispositif différentiel (Disjoncteur différentiel)

Schéma TT en présence d'un défaut d'isolement

- Le courant de défaut est un courant de fuite à la terre
- Ce sont les protections différentielles (DDR) qui déclenchent! Encore faut-il savoir laquelle : idéalement, seule la ② doit déclencher. Cela m'amène à vous parlez de la sensibilité de tête ① et de sélectivité différentielle en le ② et le ②

Schéma équivalent de la boucle de défaut :

Calcul du courant de défaut :

$$V3 = (R_A + R_B) \times Id \Rightarrow Id = \frac{V3}{R_A + R_B}$$

Calcul de la tension de contact :

$$Uc = R_A \times Id$$

Synthèse:

- Si $Id \ge I\Delta n \Rightarrow$ Déclenchement de la protection différentielle.
- Si Uc ≤ U_L (50V) ⇒ Pas de danger pour les personnes. Dans le cas contraire il y a danger.
- Remarque : une protection différentielle peut ne pas déclencher à la condition que Uc reste inférieure à $U_{\scriptscriptstyle L}$

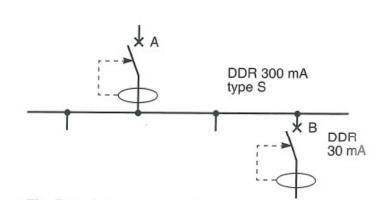
Sensibilité et sélectivité différentielle

La sensibilité du <u>1er</u> différentiel doit être conforme au tableau suivant :

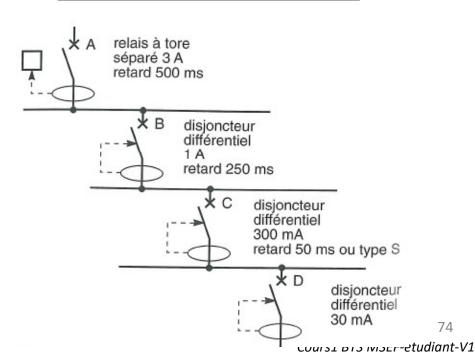
Schéma TT							
/ Courant naminal	Résistance maximale de la prise de terre						
I_{Δ} - Courant nominal du dispositif différentiel	des masses R_A (en ohms) $U_L = 50 \text{ V}$						
20 A 10 A	2,5 5						
1 A	50						
500 mA 300 mA	100 167						
100 mA 30 mA	500 1 670						
6 mA	8 300						

Le tableau ci-dessus est issu de la formule suivante :

$$I\Delta n \leq \frac{U_L}{R_A}$$

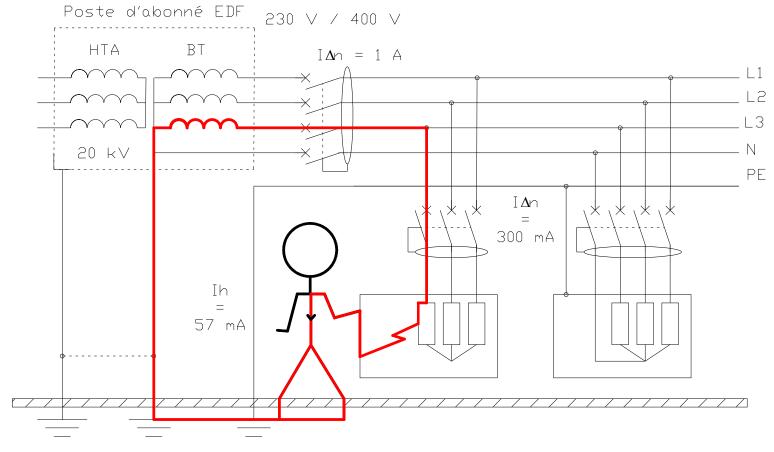

Sélectivité des protections différentielles

<u>Sélectivité</u>: Késako? Prenons la solution habitat ci-dessous! Il s'agit de faire en sorte que seule la protection B déclenche en cas de défaut d'isolement en aval de celle-ci.


Règle de sélectivité :

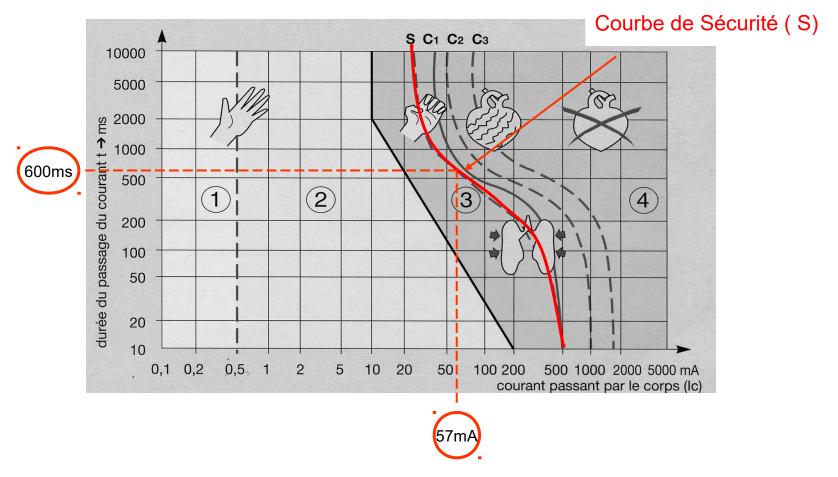
- Le rapport des sensibilité entre le DDR amont et aval doit être au minimum de 3
- Le DDR amont doit être retardé par rapport au DDR aval.

Solution habitat

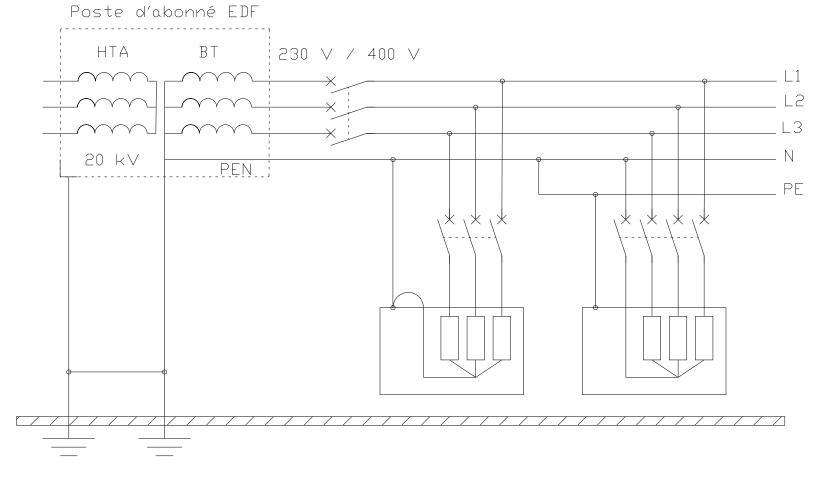

Solution tertiaire et industriel

74

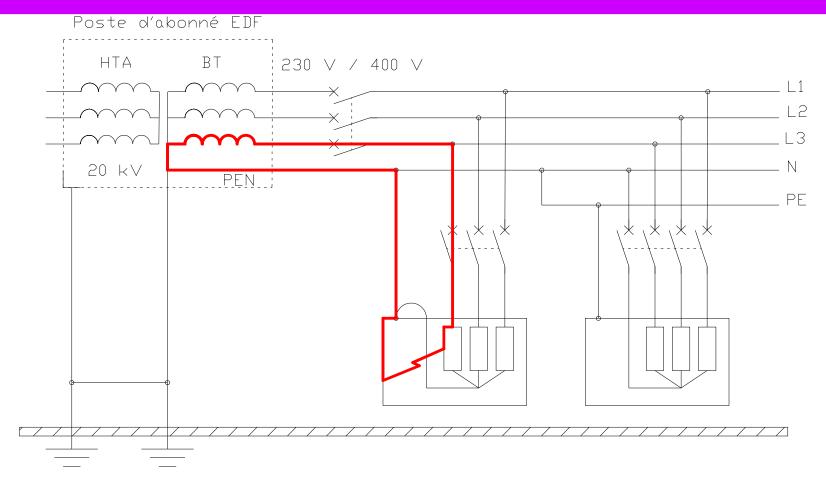
Pourquoi protéger les récepteurs avec risque de rupture de conducteur de terre par un DDR HS (Différentiel Haute Sensibilité)


La situation ci-dessous correspond à une installation TT en avec une masse non reliée à la terre (rupture du conducteur Vert/Jaune). Cette situation est aussi dangereuse qu'un contact direct!

Le courant de défaut est limité par la résistance du corps et est ainsi trop faible pour faire déclencher les différentiels différents de la haute sensibilité (>30mA).


75

La mort est assurée si la personne ne parvient pas à se dégager en moins de 0,6 seconde (600ms)!!



La solution consiste à protéger les récepteurs à risques de rupture de conducteur de terre, en fait tous les récepteurs branchés sur prise de courant, par un DDR HS

Schéma TN neutre à la Terre / masse au Neutre

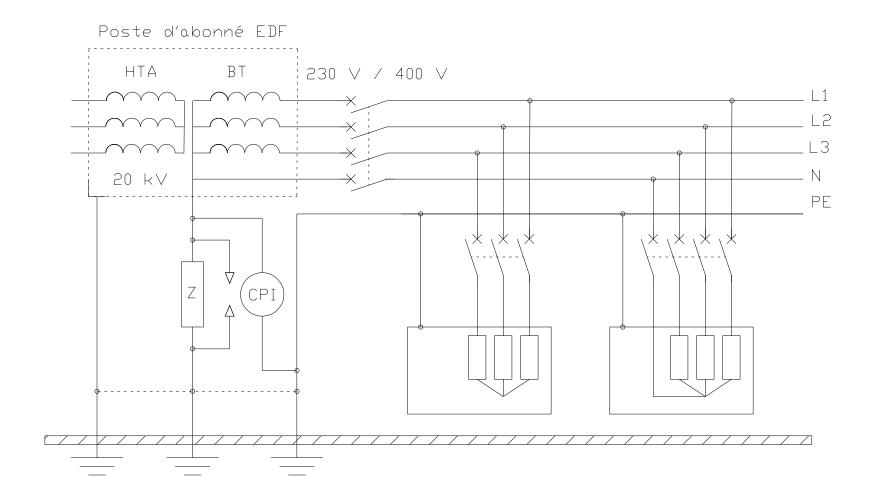
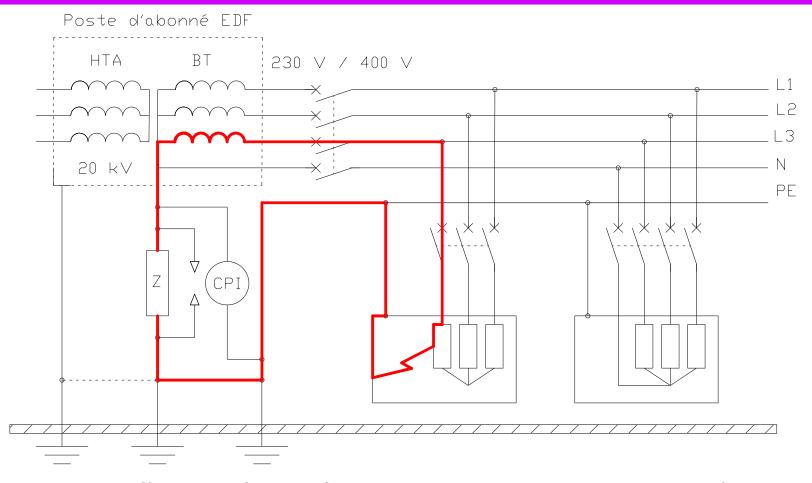


Schéma TN en présence d'un défaut d'isolement



- Le courant de 1^{er} défaut est un courant de court-circuit monophasé.
- Ce sont les protections à maximum de courant (fusibles ou disjoncteur) qui déclenchent!

Schéma IT neutre à la Impédant / masse à la Terre

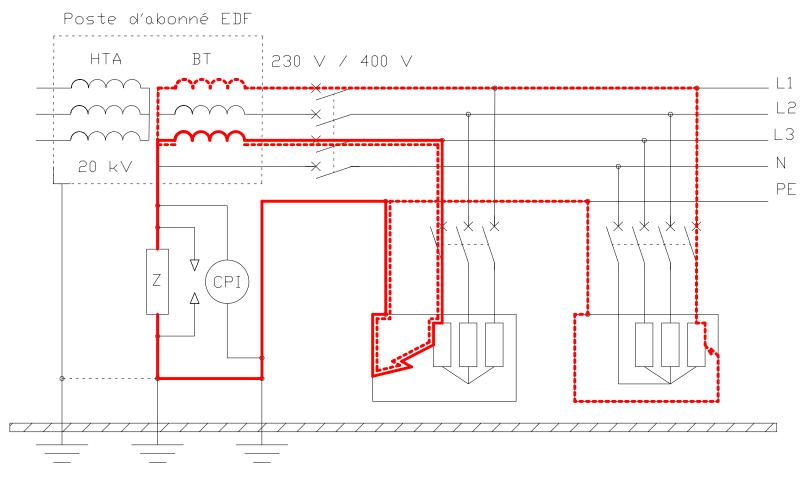


Schéma IT en présence d'un 1^{er} défaut d'isolement

- Le courant de 1er défaut est limité par l'impédance d'isolement de l'installation. Il demeure trop faible pour engendrer un danger.
- Le 1er Défaut est détecté par le CPI (Contrôleur Permanent d'Isolement) qui averti de façon sonore et lumineuse la présence d'un défaut.

Schéma IT en présence d'un 2ème défaut d'isolement

- Le courant de 2^{ème} défaut est un courant de court-circuit monophasé ou biphasé (cas de l'exemple)
- Ce sont les protections à maximum de courant (fusibles ou disjoncteur) qui déclenchent!

Schéma de liaison à la terre	Avantages	Inconvénients
TT	Simplicité de mise en œuvre de contrôle et d'exploitation	 Coupure au 1^{er} défaut Nécessite d'installer des dispositifs différentiels (DDR) Sélectivité difficile
TN	■Protection contre les contacts indirects réalisée par des dispositifs à maximum de courant (fusible / disjoncteur) ■En schéma TNC, économie d'un pôle et d'un conducteur.	 Coupure au 1^{er} défaut Passage du conducteur de protection dans les même canalisations que les conducteurs actifs. Nécessité de réaliser des liaisons équipotentielles supplémentaires
IT	■Pas de coupure au 1er défaut d'isolement	 Nécessité de réaliser une équipotentialité des masses sinon installation de dispositifs différentiels Installation de limiteur de surtension Limitation de l'étendue des installations Surveillance de l'isolement, ce qui nécessite un service de maintenance qualifié Non distribution du neutre, sinon nécessité de le protéger.

Nature du réseau	Préconisé	Possible	Déconseillé
Réseau très étendu avec bonnes prises de terre des masses d'utilisation (maxi : 10Ω)	TN	TT	IT
Réseau très étendu avec mauvaises prises de terre des masses d'utilisation (30Ω)	TT		IT TN
Réseau perturbé (zone orageuse)	TN	TT	IT
Réseau avec lignes aériennes extérieures	TT	TN	IT
Réseau où la production nécessite des organes de sécurité ou quand la continuité d'exploitation prédomine	IT		TT TN

Nature des récepteurs			
Récepteurs à faible isolement (fours électriques, soudeuses, outils chauffants, thermoplongeurs, équipements de grandes cuisines)	TN	TT	
Nombreux récepteurs monophasés, mobiles, semi-fixés portatifs.	TT		IT TN
Equipements électroniques Régulateurs Automates programmables	TN	IT	IT
Récepteurs d'une fonction de sécurité	IT		TT TN

Schéma imposé ou fortement recommandé	
Bâtiment alimenté en BT par le réseau de distribution public	TT
Salles d'opération, d'anesthésie et de cathétérisme cardiaque (NF C 15-211)	IT médical
Circuit de sécurité	IT
Ordinateurs, grandes cuisines, électronique de puissance, Hôpitaux	TN

ANNEXES

Détermination des intensités

- Prendre directement la valeur indiquée par le constructeur si disponible.
- Si valeur non disponible :

Pour les moteurs:

$$I_{n} = \frac{P_{n}}{\sqrt{3} \times U \times Cos\varphi}$$
 pour les moteurs à rotors secs triphasé

$$I_{n} = \frac{p_{n}}{\sqrt{\frac{n}{V \times Cos\phi}}} \text{ pour les moteurs à } \frac{rotors secs monophasés}{\sqrt{\frac{n}{V}}}$$

$$In = \frac{Pa}{\sqrt{3} \times U \times Cos\varphi}$$
 pour les moteurs à rotors noyés triphasés.

$$M = \frac{Pa}{V \times Cos\varphi}$$
 pour les moteurs à rotors secs monophasés.

Pa : Puissance absorbée (donc électrique)

Pu : Puissance utile (donc mécanique)

V:230 V / U:400 V

Cosφ : facteur de puissance (Si non indiqué, prendre 0,7 pour les moteurs triphasés et 0,5 pour les moteurs monophasés).

Détermination des intensités (suite)

Pour les résistances :

$$In = \frac{P}{\sqrt{3} \times U \times Cos \varphi}$$
 pour les batteries électriques triphasées.

$$In = \frac{P}{V \times Cos \varphi}$$
 pour les batteries électriques monophasés.

P : Puissance de la batterie électrique (remarque PA = Pu pour les résistar électriques)

V : 230 V / U : 400 V

Cosφ : facteur de puissance égale à 1

Pour les autres usages :

$$In = \frac{Pa}{\sqrt{3} \times U \times Cos \varphi}$$
 pour les récepteurs triphasés.

$$In = \frac{Pa}{\sqrt{3} \times V \times Cos \varphi}$$
 pour les récepteurs monophasés.

Pa : Puissance absorbée (donc électrique)

V : 230 V / U : 400 V

Cosφ : facteur de puissance (Si non indiqué, le prendre égale à 0,5).

ANNEXE 1

Tableau CA guide UTE C 15-105 donnant l'Ik3 aval en fonction de l'Ik Amont

Multiplier les longueurs réelles par 2 pour trouver l'IK1

lk3

2

Icc Amont en kA

Choix des longueurs : par défaut (plus court)

Choix Ik amont : par excès (plus grand)

section (S)	Π.													10-11										
des conducteurs	,							L	ong	Jeur	de la	acar	alis	ation	(L) e	n mè	tre						
de phase en mm2																								
1,5		T	T		П		T		Г					0,8	1	1,3	1,6	3	6,5	8	9,5	13	16	32
2,5	\vdash												1	1,3	1,6	2,1	2,6	5	10	13	16	21	26	50
4												0,8	1,7	2,1	2,5	3,5	4	8,5	17	21	25	34	42	85
6												1,3	2,5	3	4	5	6,5	13	25	32	38	50	65	130
10										0,8	1,1	2,1	4	5,5	6,5	8,5	11	21	42	55	65	85	110	210
16								0,9	1	1,4	1,7	3,5	7	8,5	10	14	17	34	70	85	100	140	170	340
25	\Box						1	1,3	1,6	2,1	2,6	5	10	13	16	21	26	50	100	130	160	210	260	
35							1,5	1,9	2,2	3	3,5	7,5	15	19	22	30	37	75	150	190	220	300	370	
50						1,1	2,1	2,7	3	4	5,5	11	21	27	32	40	55	110	210	270	320			
70						1,5	3	3,5	4,5	6	7,5	15	30	37	44	60	75	150	300	370				
95				0,9	1	2	4	5	6	8	10	20	40	50	60	80	100	200	400					
120		0,9	1	1,1	1,3	2,5	5	6,5	7,5	10	13	25	50	65	75	100	130	250						
150	0,8	1	1,1	1,2	1,4	2,7	5,5	7	8	11	14	27	55	70	80	110	140	270						
185	1	1,1	1,3	1,5	1,6	3	6,5	8	9,5	13	16	32	65	80	95	130	160	320						
240	1,2	1,4	1,6	1,8	2	4	8	10	12	16	20	40	80	100	120	160	200	400						
300	1,5	1,7	-	2,2	2,4	5	9,5	12	15	19	24	49	95	120	150	190	240							
2 x 120	1,5	1,8	2	2,3	2,5	5,1	10	13	15	20	25	50	100	130	150	200	250							
2 x 150	1.7	1,9	2,2	2,5	2,8	5,5	11	14	17	22	28	55	110	140	180	220	280							
2 x 185	2	2,3	-	2,9	3,5	6,5	13	16	20	26	33	65	130	160	200	260	330							
3 x 120	2.3	2,7	3	3,5	4	7,5	15	19	23	30	38	75	150	190	230	300	380							
3 x 150	2.5	2,9	3,5	-	4	8	16	21	25	33	41	80	160	210	250	330	410							
3 x 185	2,9	3,5	4	4.5	5	9,5	20	24	29	39	49	95	190	240	290	390								
ISO ISO awaii								(<u></u>	J(7)	7[<u>√</u> 7	7	ع د	킑								
100	94	94	93	92	91	83	71	67	63	56	50	33	20	17	14	11	9	5	2,4	_	1,6	1,2	1	0,5
90	85	85	84	83	83	76	66	62	58	52	47	32	20	16	14	11	9	4,5	2,4	2	_	1,2	_	0,5
80	76	76	75	75	74	69	61	57	54	49	44	31	19	16	14	11	9	4,5	2,4	2	1,6	1,2	1	0,5
70	67	67	66	66	65	61	55	52	49	45	41	29	18	16	14	11	9	_	2,4	_	_	1,2	1	0,5
60	58	58	57	57	57	54	48	46	44	41	38	27	18	15	13	10	8,5		2,4	-	1,6	1,2	-	0,5
50	49	48	48	48	48	46	42	40	39	36	33	25	17	14	13	10	8,5		2,4	_	1,6	1,2	1	0,5
40	39	39	39	39	39	37	35	33	32	30	29	22	15	13	12	9,5	8	_	2,4	_	_	1,2	$\overline{}$	0,5
35	34	34	34	34	34	33	31	30	29	27	26	21	15	13	11	9	8	_	2,3		1,6	1,2	1	0,5
30	30	29	29	29	29	28	27	26	25	24	23	19	14	12	11	9	7,5	4,5	2,3	1,9	1,6	1,2	1	0,5
25	25	25	25	24	24	24	23	22	22	21	20	17	13	11	10	8,5	7	4	2,3	1,9	1,6	1,2	1	0,5
20	20	20	20	20	20	19	19	18	18	17	17	14	11	10	9	7,5	6,5	4	2,2	1,8	1,5	1,2	1	0,5
15	15	15	15	15	15	15	14	14	14	13	13	12	9,5	8,5	8	7	6	4	2,1	1,8	1,5	1,2	_	0,5
10	10	10	10	10	10	10	9,5	9,5	9,5	9,5	9	8,5	7	6,5	6,5	5,5	5	3,5	2	1,7	1,4	1,1	0,9	0,5

Courant de court-circuit au niveau considéré en kA (lcc aval)

Disjonc	teurs									ANNEXE 2.1					
	tarifs bleu jaune vert		vert	-	courbes de déclenchement C B D MA				tension maxi d'emploi (V CA)	pouvoir de coupure (kA) 3 4,5 5 6 7,5 10 15 20 25 5					
Déclic								2 à 32	230		A50				
DT40								1 à 40	230/400		A54				
DT40N								1 à 40	230/400		A55				
XC40		trice						10 à 40	415	sous 415 V	A172				
C60N								0,5 à 63	440	sous 415 V	A65				
C60N						-		0,5 à 63	440	sous 415 V	A66				
C60H								0,5 à 63	440	sous 415 V	A67				
C60L								0,5 à 25	440	sous 415 V	A68				
C60L								32 et 40	440	sous 415 V	A68				
C60L								50 et 63	440	sous 415 V	A68				
C60LMA							=	1,6 et 2,5	440	sous 415 V	A130				
C60LMA								4 à 25	440	sous 415 V	A130				
C60LMA								40	440	sous 415 V	A130				
C120N								63 à 125	440	sous 415 V	A81				
C120H								50 à 125	440	sous 415 V	A82				
NG125N								10 à 125	500	sous 415 V	A91				
NG125L								10 à 80	500	sous 415 V	A92				
NG125LMA								4 à 80	500	sous 415 V	A131				
P25M		4		(spé	cial mo	teur)		0,16 à 25	690	sous 415 V	A127				
C32H-DC				■ sp	oécial C	c.C		1 à 40	127 V CC 250 V CC		A102				

selon norme NF EN 60898 (C 61-140) marqué en face avant tel que : 3000

selon norme NF EN 60947-2 (C 63-120) marqué en face avant tel que : 5 kA IEC 947.2

ANNEXE 2.2

Disjoncteurs DT40 **©**

NF EN 60898 (C 61-410): 4500 A NF EN 60947-2 (C 63-120): 6 kA

Disjoncteurs DT40

Caractéristiques :

- agréés NF
- tension d'emploi Ue : 230 V CA entre phases et neutre ; 400 V CA entre phases
- tension d'isolement : Ui = 400 V entre phases
- tenue aux chocs de tension : Uimp = 6 kV
- pouvoir de coupure :
- □ selon NF EN 60898

calibre (A)	type	tension (V CA)	P. de C ICn (A)
1 à 40	uni + N	230	4500
	tri, tri + N	400	4500

□ selon NF EN 60947-2

calibre (A)	type	tension (V CA)	P. de C ICn (kA)
1 à 40	uni + N	230 400	6 2 (1)
	tri, tri + N	230	10
		400	6

(1) Pouvoir de coupure sous 1 pôle en régime de neutre IT (cas du défaut double).

■ sectionnement à coupure pleinement apparente (selon EN 60947-2) : une bande

type	largeur en	cal.	réf. courbe	es	
	pas de 9 mm	(A)	В	C	D
1P+N	2	1		210190	
N 1		2		210200	
`T		3		210210	
<u> </u>		2 3 4 6		210220	
2			210090	210230	
1 7		10	210100	210240	
N 2		16	210110	210250	
		20	210120	210260	
		25	210130	210270	
		32	210140	210280	
		40	210150	210290	
3P	6	6		210430	210530
1 3 5		10		210440	210540
`* `* `*		16		210450	210550
FF/		20		210460	210560
5 5 5		25		210470	210570
777		32		210480	210580
2 4 6		40		210490	210590
3P+N	6	6		21063 0	210730
N 1 3 5		10		210640	210740
L*_*_*		16		210650	210750
HH		20		21066 0	210760
1 5 5 5		25		210670	210770
1 7 7 7		32		210680	210780
N 2 4 6		40		210690	210790

DT40 1P+N

Protection des circuits : page K(1g) Courbes de déclenchements : page K(2) Auxiliaires électriques : page A62 Accessoires : page A63

Disjoncteurs DT40N 👁

NF EN 60898 (C 61-410) : 6000 A NF EN 60947-2 (C 63-120) : 10 kA

DT40N 1P+N

DT40N 3P+N

Disjoncteurs DT40N

Caractéristiques identiques aux DT40 (voir page ci-contre) sauf :

■ pouvoir de coupure :

□ selon NF EN 60898

type	calibre (A)	tension (V CA)	P. de C ICn (A)
uni + N	1 à 40	230	6000
tri, tri + N	1 à 40	400	6000

□ selon NF EN 60947-2

type	calibre (A)	tension (V CA)	P. de C ICn (kA)
uni + N	1 à 40	230	10
		400	2 (1)
tri, tri + N	1 à 40	230	15
		400	10

type	largeur en pas	calibre	référence	
	de 9 mm	(A)	courbe C	courbe D
1P+N	2	1	213600	213710
N 1		2	213610	213720
, l , ±		3	213620	
<u></u>		2 3 4 6	213630	213730
5		6	213640	213740
1 7		10	213650	213750
N 2		16	213660	213760
		20	213670	213770
		25	213680	213780
		32	213690	213790
		40	213700	213800
3P	6	6	213840	213940
1 3 5		10	213850	213950
. * . * . *		16	213860	213960
$\vdash\vdash\vdash$		20	213870	213970
5 5 5		25 32	213880	213980
7 7 7		32	213890	213990
2 4 6		40	213900	214000
3P+N	6	6	214040	214140
N 1 3 5		10	214050	214150
1 * * *		16	214060	214160
$\vdash\vdash\vdash\vdash$		20	214070	214170
1 2 2 2		25	214080	214180
1555		32	214090	214190
N 2 4 6		40	214100	214200

(1) Pouvoir de coupure sous 1 pôle de régime en neutre IT (cas du double défaut).

Disjoncteurs C60N courbe C et B

Fonction et utilisation

Courbe C : commande et protection contre les surintensités de circuits.

Courbe B : commande et protection contre les surintensités de circuits avec

protection des personnes en régimes IT et TN pour des longueurs de câbles plus importantes qu'avec la courbe C.

ANNEXE 2.4

C60N bi

C60N tri

C60N tétra

uni + neutre	4	1	24183	
1 ≭		2	24184	
ĹX X 3		3	24185	
//		4	24186	
15		1 2 3 4 6 10	24187	
15		10	24188	
17		16 20 25 32 40	24189	
N 4		20	24190	
		25	24191	
		32	24192	
		40	24193	
		50	24194	
		63	24195	
bi	4	0,5 0,75 1 2 3 4 6 10	24060	
1 3 * *		0,75	24061	
ͺϪͺϪ		1	24196	
<i>}</i> }		2	24197	
55		3	24198	
* * 55		4	24199	
רְ רְ		6	24200	
2 4		10	24201	23941
		16	24202	23942
		20	24203	23943
		25	24204	23944
		20 25 32	24205	23945
		40	24206	23946
		50	24207	23947
		63	24208	23948
tri	6	63 0,5 0,75	24062	
1 3 5		0.75	24063	
1 3 5 * * *		1	24209	
* * *		1 2 3 4 6 10	24210	
$\Gamma \Gamma \Gamma$		3	24211	
555		4	24212	
7 7 7		6	24213	
2 4 6		10	24214	23954
		16	24215	23955
		20	24216	23956
		25	24217	23957
		32	24218	23958
		20 25 32 40	24219	23959
		50	24220	23960
		63 0,5 0,75	24221	23961
tétra	8	0.5	24064	
1 3 5 7		0.75	24065	
****		1	24222	
TTTT		2	24223	
777		3	24224	
ככככ		4	24225	
\$ \$ \$ \$		1 2 3 4 6	24226	
2 4 6 8		10	24227	23967
		16	24228	23968
		20	24229	23969
		25	24230	23970
		16 20 25 32 40	24231	23971
		40	24232	23972
		63	24234	23974
		50	24233	23973

Disjoncteurs C60N (suite)

NF EN 60947-2 (C 63-120): 10 kA

Disjoncteurs C60N courbe D

Fonction et utilisation

Commande et protection de circuits dans toutes les installations présentant de forts courants d'appel.

1 24565 2 24566 3 24567 4 24568 6 24569 bi	type	largeur en pas de 9 mm	calibres (A) 0,5	réf. courbe D
1 24565 2 24566 3 24567 4 24568 6 24569 bi	uni	2	0,5	24493
3	1		1	
bi	, 1		2	
bi	\		3	24567
bi	2		4	
16 24586 20 24588 25 24589 32 24590 40 24591 50 24593 63 24594 tri 6 0,5 24495 1 24596 3 24596 3 24597 4 24596 6 24599 10 24601 16 24602 20 24603 25 24606 50 24608 63 24609 tétra 8 0,5 24696 63 24608 63 24609 10 24616 10 24610 10 24611 10 24616 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24611	Ş		6	24569
16 24586 20 24588 25 24589 32 24590 40 24591 50 24593 63 24594 tri 6 0,5 24495 1 24596 3 24596 3 24597 4 24596 6 24599 10 24601 16 24602 20 24603 25 24606 50 24608 63 24609 tétra 8 0,5 24696 63 24608 63 24609 10 24616 10 24610 10 24611 10 24616 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24611	bi	4	0,5	24494
16 24586 20 24588 25 24589 32 24590 40 24591 50 24593 63 24594 tri 6 0,5 24495 1 24596 3 24596 3 24597 4 24596 6 24599 10 24601 16 24602 20 24603 25 24606 50 24608 63 24609 tétra 8 0,5 24696 63 24608 63 24609 10 24616 10 24610 10 24611 10 24616 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24611	1 9		1	24580
16 24586 20 24588 25 24589 32 24590 40 24591 50 24593 63 24594 tri 6 0,5 24495 1 24596 3 24596 3 24597 4 24596 6 24599 10 24601 16 24602 20 24603 25 24606 50 24608 63 24609 tétra 8 0,5 24696 63 24608 63 24609 10 24616 10 24610 10 24611 10 24616 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24611	<u>*</u> *		2	24581
16 24586 20 24588 25 24589 32 24590 40 24591 50 24593 63 24594 tri 6 0,5 24495 1 24596 3 24596 3 24597 4 24596 6 24599 10 24601 16 24602 20 24603 25 24606 50 24608 63 24609 tétra 8 0,5 24696 63 24608 63 24609 10 24616 10 24610 10 24611 10 24616 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24611	//		3	24582
16 24586 20 24588 25 24589 32 24590 40 24591 50 24593 63 24594 tri 6 0,5 24495 1 24596 3 24596 3 24597 4 24596 6 24599 10 24601 16 24602 20 24603 25 24606 50 24608 63 24609 tétra 8 0,5 24696 63 24608 63 24609 10 24616 10 24610 10 24611 10 24616 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24611	55		4	24583
16 24586 20 24588 25 24589 32 24590 40 24591 50 24593 63 24594 tri 6 0,5 24495 1 24596 3 24596 3 24597 4 24596 6 24599 10 24601 16 24602 20 24603 25 24606 50 24608 63 24609 tétra 8 0,5 24696 63 24608 63 24609 10 24616 10 24610 10 24611 10 24616 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24610 10 24611	5 5		6	24584
50 24623	2 4		10	24586
50 24623			16	24587
50 24623			20	24588
50 24623			25	24589
50 24623			32	24590
50 24623			40	
50 24623			50	
50 24623			63	
50 24623	tri	6	0.5	
50 24623	1 2 5	0	1	24505
50 24623	* * *		-	24555
50 24623	<u> </u>		2	24590
50 24623	$\Gamma\Gamma\Gamma$		3	
50 24623	2 2 2		6	24598
50 24623	777		40	24599
50 24623	2 4 6		10	
50 24623			16	24602
50 24623			20	24603
50 24623			25	24604
50 24623			32	
50 24623			40	24606
50 24623			50	24608
50 24623		^	63	
50 24623		8	0,5	
50 24623	1 3 5 7		1	24610
50 24623	$^{\top}$ $^{\top}$ $^{\top}$ $^{\top}$ $^{\top}$		2	24611
50 24623	L447		3	
50 24623	ככככ		4	
50 24623	5555		6	24614
50 24623	2 4 6 8		10	24616
50 24623			16	
50 24623			20	
50 24623			25	24619
50 24623			32	
50 24623			40	24621
60 04004			50	
63 24624			63	24624

C60N tétra

ANNEXE 2.5

CIRCUITS MONOPHASES 230V REGIME NORMAL

ANNEXE 3

u% 1

Pour des chutes de tension tolérées supérieures, multiplier les longueurs (2% : Multiplier par 2 ; 3% : Multiplier par 3...)

Fusible	4 A	6 A	10 A	20 A	25 A	32 A	50 A	63 A	80 A	100 A
Disjoncteur	6 A	10 A	16 A	20 A	32 A	40 A	50 A	80 A	100 A	125 A

INTENSITE					SECTI	ONS					
	0,75 mm ²	1 mm²	1,5 mm²	2,5 mm ²	4 mm²	6 mm²	10 mm²	16 mm²	25 mm²	35 mm²	
1 A	38	50	75	125	200	300	500	800	1250	1750	
2 A	19	25	38	63	100	150	250	400	625	875	
3 A	13	17	25	42	67	100	167	267	417	583	
4 A	9	13	19	31	50	75	125	200	313	438	
5 A	8	10	15	25	40	60	100	160	250	350	
6 A	6	8	13	21	33	50	83	133	208	292	
7 A		7	11	18	29	43	71	114	179	250	
8 A		6	9	16	25	38	63	100	156	219	
9 A		6	8	14	22	33	56	89	139	194	
10 A		5	8	13	20	30	50	80	125	175	
12 A			6	10	17	25	42	67	104	146	
14 A			5	9	14	21	36	57	89	125	
16 A			5	8	13	19	31	50	78	109	
18 A				7	11	17	28	44	69	97	
20 A				6	10	15	25	40	63	88	
25 A					8	12	20	32	50	70	
30 A					7	10	17	27	42	58	
35 A						9	14	23	36	50	
40 A		LONGII	EURS MAX	IMALES I	REGIME	8	13	20	31	44	
45 A		LONGO		_	COUNT		11	18	28	39	
50 A			NORI	MAL				16	25	35	
55 A		CHI	JTE DE TEI	NSION DE	1%			15	23	32	
60 A		0110	, <i>D</i> _ 1 _ 1		/0			13	21	29	
65 A								12	19	27	
70 A								11	18	25	

ATTENTION : Pour les câbles alimentant les moteurs, vérifier la chute tension maximale au démarrage (Cf. Circuits monophasés 230V régime de démarrage).

Interdit en distribution (d'armoire vers armoire)

CIRCUITS TRIPHASES 400V REGIME NORMAL

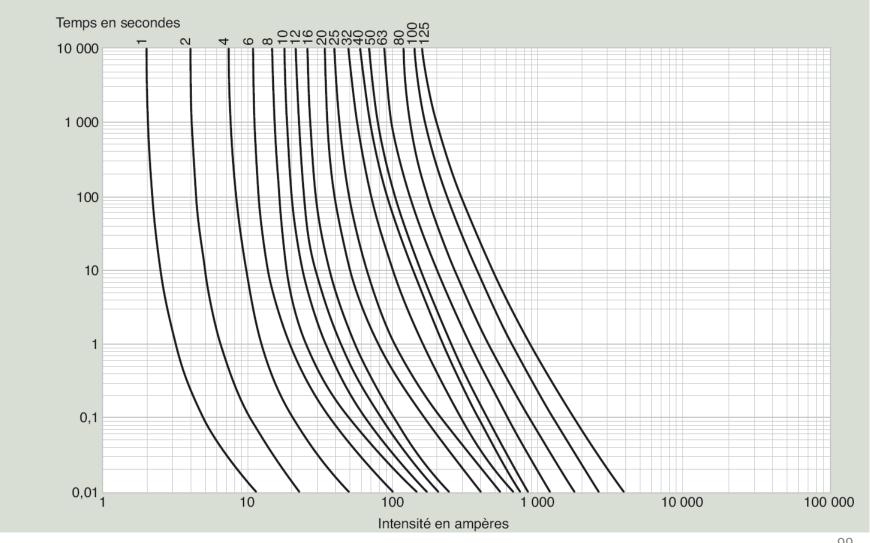
ANNEXE 4

u% 1

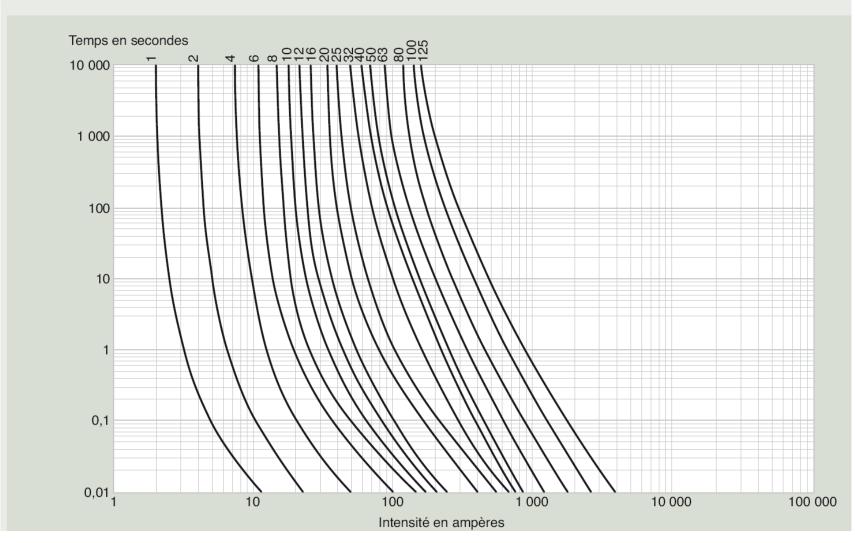
Pour des chutes de tension tolérées supérieures, multiplier les longueurs (2% : Multiplier par 2 ; 3% : Multiplier par 3...)

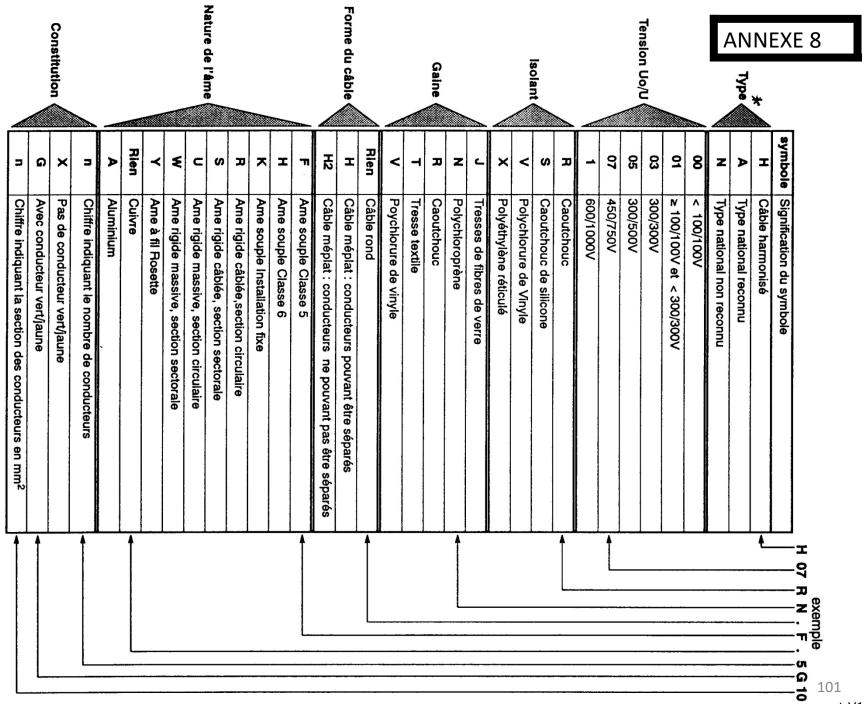
Fusible	4 A	6 A	10 A	16 A	25 A	32 A	40 A	50 A	80 A	100 A
Disjoncteur	6 A	10 A	16 A	20 A	25 A	32 A	50 A	63 A	80 A	100 A

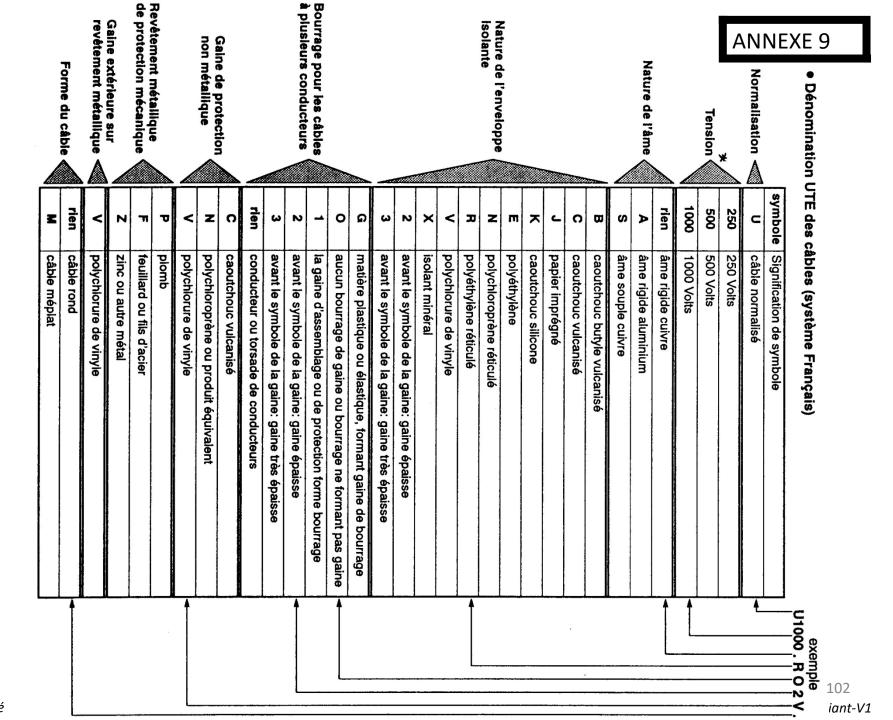
INTENSITE					SECT	IONS				
	0,75 mm ²	1 mm ²	1,5 mm²	2,5 mm ²	4 mm²	6 mm²	10 mm²	16 mm²	25 mm²	35 mm²
1 A	94	125	187	312	500	750	1250	1999	3123	4371
2 A	47	62	94	156	250	375	625	1000	1562	2187
3 A	31	42	62	104	167	250	417	667	1041	1458
4 A	23	31	47	78	125	187	312	500	781	1094
5 A	19	25	37	62	100	150	250	400	625	875
6 A	16	21	31	52	83	125	208	333	521	729
7 A		18	27	45	71	107	179	286	446	625
8 A		16	23	39	62	94	156	250	391	547
9 A		14	21	35	56	83	139	222	347	486
10 A		12	19	31	50	75	125	200	312	437
12 A			16	26	42	62	104	167	260	365
14 A			13	22	36	54	89	143	223	312
16 A			12	20	31	47	78	125	195	273
18 A				17	28	42	69	111	174	243
20 A				16	25	37	62	100	156	219
25 A					20	30	50	80	125	175
30 A						25	42	67	104	146
35 A							36	57	89	125
40 A		LONG	SUEURS	MAYIM	AI EQ		31	50	78	109
45 A							28	44	69	97
50 A		R	REGIME I	NORMA	L		25	40	62	87
55 A		CHUT	E DE TE	NSION F	OF 1%			36	57	80
60 A		<u> </u>			- 170			33	52	73
65 A									48	67
70 A									45	62


ATTENTION : Pour les câbles alimentant les moteurs, vérifier la chute tension maximale au démarrage (Cf. Circuits triphasés 400V régime de démarrage).

ANNEXE 5


		Embout supérieur avec voyant
Support du percuteur		Percuteur-indicateur de fusion
Intérieur de la cartouche rempli de silice		Corps de la cartouche en porcelaine
	×	Élément fusible
Embout inférieur		Fil fusible maintenant le voyant avant la fusion
Soudure de l'élément fusible		·


Taille	Gamme du calibre	Type
8,5 x 31,5	1 - 16 A	
10 x 38	0,5 - 25 A	, ac
14 x 51	2 - 50 A	gG
22 x 58	4 - 125 A	
8,5 x 31,5	1 - 10 A	
10 x 38	0,25 - 25 A	aM
14 x 51	2 - 50 A	alvi
22 x 58	16 - 125 A	
00	25 - 160 A	
0	63 - 200 A	
1	125 - 250 A	A couteau
2	200 - 400 A	gG
3	500 - 630 A	
4	630 - 1250 A	
00	25 - 125 A	
0	63 - 160 A	
1	125 - 250 A	A couteau
2	200 - 400 A	aM
3	500 - 630 A	
4	630 - 1000 A	

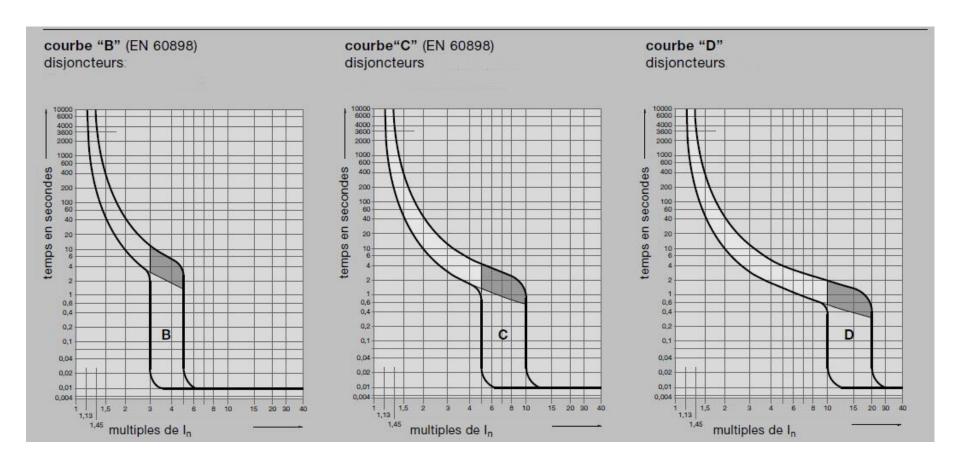

■ Type gG

■ Type gG

Tableau 52A -Conducteurs et câbles isolés

											ANNEXE	10
3 (3	506 507 508 509	501 502 503 504 505	221 224 225 226 227 227 228 229	207 208 209	204 205 206	201 202 203	121 122 123 124 125 126	101 102 111 112 113	51 52 53	23 24 25 26 27 28	- (3	_ Z
Les conducteurs or comme étant dans	f 1 1 1	CABLEO ALONG		H 07 V3-U H 07 V3-R H 07 V3-K	H 07 V2-U H 07 V2-R H 07 V2-K	CONDUCTEURS ISOL H 07 V-U H 07 V-R H 07 V-K		CABLES ISOLES AU F H 07 VVD3H2-F H 07 VVH2-F FR-N 05 VV-U FR-N 05 VV-R FR-N 05 VL2V-U FR-N 05 VL2V-R)5 BB-F)5 GG-F)5 RR-F	H 07 BB-F H 07 BN4-F H 07 BN-F H 07 RN-F A 07 RN-F H 07 RN8-F FR-N 07 X4X5-F H 07 ZZ-F	CÂBLES ISOLÉS AUX U 1000 R2V (6) U 1000 RVFV (6) U 1000 RGPFV (6) FR-N1 X1X2 FR-N 1 X1X2 FR-N 1 X1X224X2 FR-N 1 X16112461 Torsades (6) RN1 XDV-AR,- AS, -AU (6)	Désignation 2
u câbles dont la température la "famille PVC"	32-310 32-310 32-310 32-310	32-310 32-310 32-310 32-310 32-310		32-201-9 32-201-9 32-201-9	32-201-7 32-201-7 32-201-7	32-201-3 32-201-3 32-201-3 32-201-3		***OLYCHLORURE DE VIN 32-202 450/750 32-207 450/750 32-207 300/500 32-207 300/500 32-207 300/500 32-207 300/500	32-102-12 32-102-11 32-102-4 32-120	32-102-12 32-102-12 32-102-10 32-102-4 32-120 32-120 32-121 32-131 32-102-13	X ÉLASTOMÉRES 32-321 6 32-322 6 32-111 6 32-323 6 32-325 6 32-325 6 32-325 6 32-325 6 32-325 6 3	Normes NF C
température	(5) (5)	(5) (5) (5)	3	450/750 450/750 450/750	450/750 450/750 450/750	450/750 450/750 450/750 450/750		JRE DE VINY 450/750 450/750 300/500 300/500 300/500 300/500	300/500 300/500 300/500 300/500	450/750 450/750 450/750 450/750 450/750 450/750 450/750 450/750	(famille 00/1000 00/1000 00/1000 00/1000 00/1000 00/1000 00/1000 00/1000 00/1000 00/1000 00/1000 00/1000 00/1000 00/1000	Tension assignée 4
admissible sur âme est inférieure	ភ ភ ភភ	7 7 7 7 7 R	รู้ เกมมดมมด		ហេរារា	DE VINYLE	w w w w w	LE (famille S S R R R	w w w w	000000000000 00000	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Souplesse 5
ur âme est	(3) A (3) (3) A (3) (3) A (3)	(3) A (3) (3) A (3) (3) A (3)	i 	111	I I I	(famille PVC)	<u> </u>	PT	2222 	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7 R R R R R R R R R R R R R R R R R R R	Revête- ments 6
D-	= =	TX OU Tam					= ====	= =	====	======	== =	Classe 7
70	8 2 8 2	C1 C1 C2 Selection		000	000	C C C C C C C C C C C C C C C C C C C	222222	22 22 22	0000 00000	C2#	23 # # # # # # # # # # # # # # # # # # #	Propa- gation 8
°C doivent être considérés	CR1 CR1	CR1 CR1 CR1 CR1		111	1 1 1	111	171111	111111	1111	11111111	111111111	Résis- tance 9
sidérés du	0 0 + 1	0011	000111	111	111	111	11111	11111	1111	00111111	111000111	Fumé opacité réduite 10
point de	0 0 11	0011	000111	1 1 1	111	111	11111	T T T T T	1 1 1 1	00111111	111000111	Fumées acité acidité duite faible 10 11
vue du cour	1,5 - 300 1,5 - 300 1,5 - 300 1,5 - 300	1,5 - 300 1,5 - 300 1,5 - 300 1,5 - 300	1,5 - 16 1,5 - 20 1,5 - 240 1,5 - 240 1,5 - 240 1,5 - 400 1,5 - 400 1,5 - 240	1,5 - 10 1,5 - 400 1,5 - 240	1,5 - 2,5 1,5 - 35 1,5 - 35	1,5 - 10 1,5 - 400 1,5 - 240	1,5 - 4 1,5 - 4 1,5 - 4 4 - 35 1,5 - 2,5	1.5 - 16 1.5 - 16 1.5 - 10 1.5 - 35 1.5 - 35 1.5 - 25	1,5 - 6 1,5 - 6	1,5 - 500 1,5 - 16 1,5 - 16 1,5 - 500 1,5 - 500 1,5 - 500 1,5 - 500 1,5 - 500	1,5 - 630 1,5 - 300 1,5 - 240 1,5 - 630 1,5 - 630 1,5 - 300 1,5 - 300 1,5 - 300	Sections mm ²
du point de vue du courant admissible	70 ou 90 (4) 70 ou 90 (4) 70 ou 90 (4) 70 ou 90 (4) 70 ou 90 (4)	70 ou 90 (4) 70 ou 90 (4) 70 ou 90 (4) 70 ou 90 (4)	180 110 110 110 110 90 90	70 70 70	90 (2) 90 (2) 90 (2)	70 70 70	70 70 90 (2) 70 70	70 70 70 70	90 110 60 (1) 60 (1)	90 90 90 90 60 (1) 60 (1) 90 70	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Température sur ânce °C H 13

(2)


Les conducteurs ou câbles dont la température admissible sur âme est supérieure ou égale à 90 °C doivent être considérés du point de vue du courant admissible comme étant dans la "famille PR"

Gaine en matière réticulée ou en matière thermoplastique
En fonction des types de revêtement - voir le constructeur

Existe dans les modèles de tensions suivantes : 300/500 V, 450/750 V, 600/1000 V - voir le constructeur

Existe aussi âme en aluminium pour les sections supérieures ou égales à 10 mm²

Courbe de déclenchement des disjoncteurs

